

Research Progress and Achievements

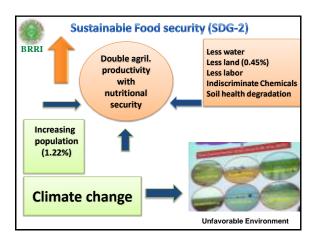
Annual Research Review Workshop 2018-19 Dr. Tamal Lata Aditya

> Director (Research) Bangladesh Rice Research Institute (BRRI) Gazipur 1701, Bangladesh

Outline of the Presentation

- Transferable technologies
 - Varietal development
 - Component technologies
- Upcoming technologies
- Useful Scientific Information
- Research thrust

by 2030 double the agricultural productivity and the incomes of smallscale food producers, particularly women, indigenous peoples, family farmers...



টেকসই উন্নয়ন অভীষ্ট ২ - সম্পৃক্ত বিষয়াবলী:

- ক্ষুধার অবসান
- খাদ্য নিরাপত্তা অর্জন
- পুষ্টি সমৃদ্ধ খাবারের যোগান
- টেকসই কৃষির উন্নয়ন

BRRI	SDG Goals Addresse	d by BRRI
SDG Targets	Role of BRRI with Targets till 2030	Achievement 2018-19
2.1 By 2030, end hunger and ensure access by all people	Development of at least 5 nutrition enriched rice varieties	BRRI dhan84 and BRRI dhan87 identified as anti- oxidant varieties & BRRI dhan90 with high protein developed. Golden rice developed
	Develop production technologies & 3-4 crops based cropping patterns instead of existing two and three crops based patterns	15 technologies developed
2.2 By 2030, double the agricultural productivity and incomes of small-scale food producers	Development of at least 30 rice varieties ensuring 10-20% yield increase as well as incomes of small scale farmers	8 rice varieties developed
2.5 By 2030, maintain the genetic diversity of seeds, cultivated plants	Collection, preservation and maintenance of rice germplasm for long-term conservation	A total of 119 rice germplasm (4 Aus, 100 Jhum rice, 14 T. Aman and 1 Boro) were collected from Bangladesh

SDG Goals Addressed by BRRI (Contd.) BRRI								
SI#	Achievement 2018-19	Characteristics	SDGs Goal addressed					
1	BRRI dhan88	Boro (Av. yield 7.0 t/ha, Duration: 140-143 days, medium slender type grain, amylose 26.3%)	1					
2	BRRI dhan89	Boro (Av. yield 8.5 t/ha, Duration: 154-158 days, medium bold type grain, amylose 28.5%)	1					
3	BRRI dhan90	T. Aman (Av. yield 4.5 – 5.0 t/ha, Duration: 115-120 days, short bold grain similar to BRRI dhan34, protein 10.3%)	2					
4	BRRI dhan91	B. Aman (Av. yield: 3.0 - 3.5 t/ha, Duration: 152 - 156 days, suitable for shallow flooding areas)	13					
5	BRRI dhan92	Boro (Av. Yield: 8.5 t/ha, Duration:156-160 days, For water limiting areas)	13					
6	BRRI dhan93	T. Aman (Av. yield: 6.0 t/ha, Duration-134 days, Pure line of Swarna)	1 & 13					
7	BRRI dhan94	T. Aman (Av. yield: 6.0 t/ha, Duration-134 days, Pure line of Ranjit Swarna)	1 & 13					
8	BRRI dhan95	T. Aman (Av. yield: 6.0 t/ha, Duration-125 days, Swarna type medium bold grain)	1 & 13					

Transferable Technologies

i) Varietal Development

BRRI

ব্রি ধান৯২: ব্রি ধান২৯-এর বিকল্প **পানি** সাশ্রয়ী বোরো জাত

- ✓ কান্ত শক্ত এবং ধান পাকার পরও গাছ

 সবুজ থাকে
- √ ফলন ক্ষমতা : ৮.৫ ট./হে.
- ✓ জীবনকাল: ১৫৮ দিন
- ✓ ধানের দানা: লম্বা চিকন ও স্বচ্ছ
- ✓ ভাত লমা হওয়ার অনুপাত: ১.৪
- ✓ অ্যামাইলোজ: ২৬.০%
- ✓ ১০০০ টি পুষ্ট ধানের ওজন: ২৩.৪ গ্রাম
- ✓ প্রোটিনের পরিমাণ: ১০.৩%

ব্রি ধান৯৩: স্বর্ণা জাতীয় রোপা আমন জাত

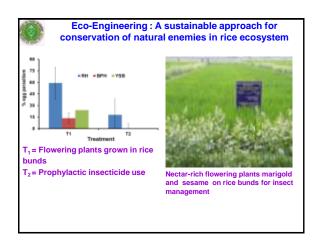
জাতের বৈশিষ্ট্যঃ

- স্বর্ণা-৫-এর বিশুদ্ধ সারি।
- ডিগপাতা খাড়া এবং পাতার রং গাঢ় সবুজ ।
- পূর্ণ বয়য় গাছের উচ্চতা ১২৭ সেমি।
- চালে অ্যামাইলোজ ২৬.১% এবং প্রোটিন ৭.৫%।
- ১০০০ টি পুষ্ট ধানের ওজন
 ১৮.৯৫ গ্রাম।
- ধানের দানার রং লালচে। চাল
 মাঝারি মোটা ও সাদা।
- গড় ফলন ক্ষমতা ৫.৮ টন/হেক্টর

ব্রি ধান৯৪: স্বর্ণা জাতীয় রোপা আমন জাত

জাতের বৈশিষ্ট্যঃ

- রঞ্জিত স্বর্ণার বিশুদ্ধ সারি ৷
- ডিগপাতা অর্ধ-খাড়া ও লম্বা এবং পাতার রং গাঢ় সবুজ ।
- পূর্ণ বয়য়য় গাছের উচ্চতা ১১৮ সেমি।
- চালে অ্যামাইলোজ ২৫.৭% এবং প্রোটিন ৭.৯%।
- ১০০০ টি পুষ্ট ধানের ওজন
 ১৮.৬০ গ্রাম।
- ধানের দানার রং লালচে । চাল মাঝারি মোটা ও সাদা ।
- গড় ফলন ক্ষমতা ৫.৯ টন/হেক্টর


ব্রি খান৯৫: ব্রি স্বর্ণা জাতের বৈশিষ্ট্য: • আধুনিক উফশী ধানের সকল বৈশিষ্ট্য বিদ্যমান। • ডিগপাতা খাড়া এবং পাতার রং গাঢ় সবুজ। • পূর্ণ বয়ক গাছের উচ্চতা ১২০ সেমি। • চালে অ্যামাইলোজ ২৮.০% এবং প্রোটিন ৮.০%। • ১০০০ টি পৃষ্ট ধানের গুজন ২১.৫০ গ্রাম। • ধানের দানার রং গাঢ় লাল। চাল মাঝারি মোটা গু সাদা। • গড় ফলন ক্ষমতা ৫.৭ টন/হেক্টর

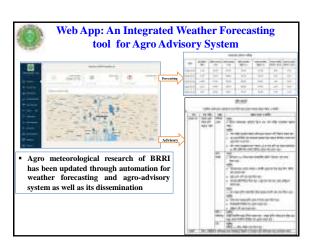
Transferable Technologies

ii. Component technologies

W Veget	Vegetables, Fish and Fruit System in derelict pond										
Location: BF	بك			erent	Exist	ing sy		: Onl		n (FD: 0 (FD: 01	
Treatments		, 10101	U dili	Tonic Control	Year					GM	%
	2012-13			2013-14			2017-18			1000 Tk/1000	Higher over
	Pond	Dyke	Total	Pond	Dyke	Total	Pond	Dyke	Total	m ²	Ts
T ₁ = Aroid+Fish (SD: 2/m ²)	104	82.15	182.2	51	88.23	139.2	195	25.91	220.9	180.8	355
T ₂ = Aroid+Fish (SD:/m ²)	87.2	82.15	169.2	49	88.23	137.2	169	25.91	194.9	167.1	321
T ₃ = Only aroid	34.15	82.15	116.3	42	88.23	130.2	147	25.91	172.9	139.8	252
T ₄ = Only fish (SD: 1/m ²)	56.18	82.15	138.3	0.0	88.23	88.23	28	25.91	53.91	93.5	135
T ₅ = Traditional Harvest	56.18	0.0	56.18	35	0.0	35	28	0.0	28	39.72	

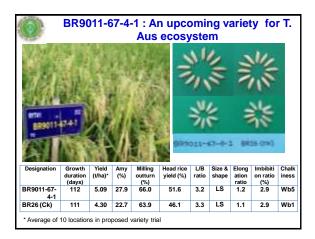
Vegetables	Yie	ld	TV	C	GM		
	Kg/0.06 ha	Kg/bigha	Tk/0.06 ha	Tk/bigha	Tk/0.06 ha	Tk/bigha	
Snake gourd	70	156	500	1115	1250	2787	
Bitter gourd	51	113	450	1003	825	1840	
Ash gourd	150	334	600	1338	3150	7025	
Ridge gourd	33	73	550	1226	275	613	

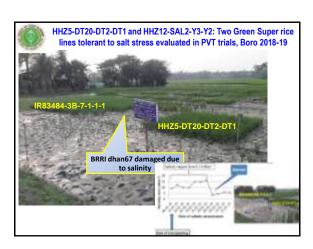
Price (Tk/kg): Snake gourd= 25, Bitter gourd= 25, Ash gourd= 25, Ridge gourd= 25



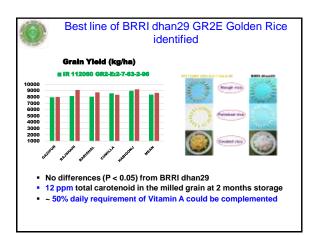
Winter Vegetables on Bank

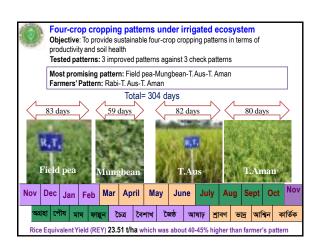
Vegetables/fruit	Yield		TV	C	GM		
	Kg/0.06 ha Kg/bigh		Tk/0.06 ha	Tk/0.06 ha Tk/bigha		Tk/bigha	
Papaya	60	133	850	1895.	350	780	
Bottle gourd	175	390	650	1450	3725	8307	
Sweet gourd	270	602	775	1728	4625	10314	
Country bean	55	122	400	892	975	2175	
Yard long bean	35	78	500	1115	375	837	





Upcoming Technologies


0


Instead of worrying transgenes in our food, lets....

- Enhance food security and nutrition
- Minimize environmental degradation
- Support farmers and rural communities
- Keep food affordable
- Medicinal support (GM insulin)

(0)

ব্রি হেড ফিড মিনি কম্বাইন হারভেস্টার

- ∙ কার্যক্ষমতাঃ ১.০∼১.২৫ বিঘা/ঘণ্টা
- জালানী খরচঃ ১.৭৫~২.৫০ লিটার/ঘণ্টা
- ধান ও গম কর্তন উপযোগী
- ১৫-২০ সে.মি. মাটির গভীরে শক্ত স্তর যুক্ত (প্লাউ-প্যান) কাদা-মাটিতে চলে
- যন্ত্রের আনুমানিক মূল্য প্রায় ৫.০০ লক্ষ টাকা

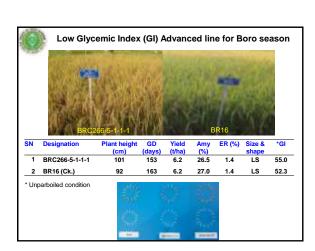
ব্রি রাইস ট্রাব্দপ্লান্টার কাম সার প্রয়োগ যন্ত্র

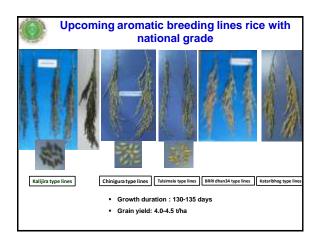
- কার্যক্ষমতা: **১.৫~২.০ বিঘা/ঘণ্টা**
- জ্বালানী খরচ: ১.০~১.২৫ লিটার/ঘণ্টা
- যান্ত্রিক পদ্ধতিতে একই সাথে ধানের চারা রোপণ ও ইউরিয়াসহ অন্যান্য সার (মিশ্র সার) ৬-৮ সে.মি. মাটির গভীরে প্রয়োগ করে নালা বন্ধ করা যায়
- প্রয়োগ করে নালা বন্ধ করা যায়

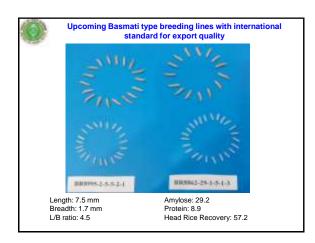
 প্রচলিত পদ্ধতির চেয়ে ২৫~৩০ ভাগ

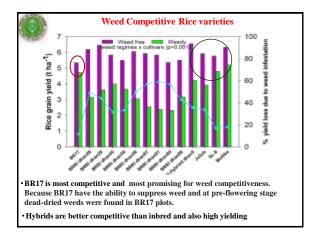
 ইউরিয়া সাশ্রয় হয়
- রাইস ট্রাব্পপ্লান্টারের সাথে অতিরিক্ত ৩৫,০০০/- টাকা খরচ করলে সার প্রয়োগ অংশটি সংযোজন করা যাবে।

ব্রি সৌর শক্তি চালিত আলোকফাঁদ

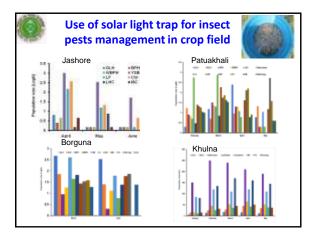

- দানাদার শস্য, ডাল, সবজি এবং অন্যান্য ফসলের পোকামাকড় দমনে কার্যকর প্রযুক্তি
- এক একর জমির পোকামাকড় দমনে একটি আলোকফাঁদই যথেষ্ট
- আলোকফাঁদটি শ্বয়ংক্রিয়ভাবে সূর্যের আলোর অনুপস্থিতিতে জ্বলে এবং আলোর উপস্থিতিতে নিভে যায়
- প্রযুক্তিটি একটি সোলার প্যানেল, ডিসি ব্যাটারি, কন্ট্রোলার, ডিসি বাল্ব, প্লান্টিকের গামলা এবং একটি স্ট্যান্ডের সমন্বয়ে তৈরি
- যন্ত্রের আনুমানিক মূল্য প্রায় =৭,০০০/টাকা

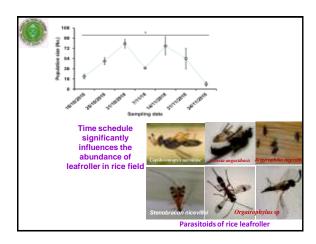





Useful Scientific Information

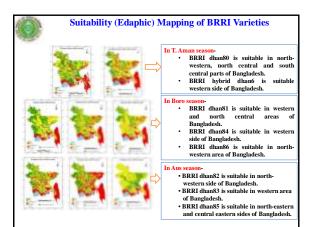
বীজ শোধন ও অংকুরোদগম ডিভাইস- অংকুরি

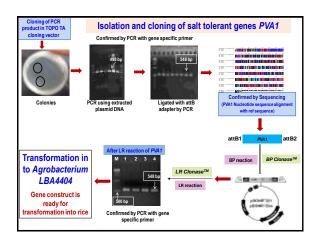

অংকুরি- একটি খনিরান্ত্রিত ডিভাইস যেখানে নির্মিষ্ট তাপে বাব্দ্য ধরমাণের মাধ্যমে সৃষ্ট্যভাবে বীজ অংকুরোগদাম বাব্দ্য ধরমানিত বীজ বাহিত জীবানু শোদন করা যায়। বীজ শোধন- খনিরান্ত্রিত পদ্ধতিতে ৫৫° সে. তাপমাত্রার ১৫ মিনিট গরম পানিতে রোগাক্রান্ত বীজ রেমে বীজ বাহিত জীবানু পোধন করা যায়। যেমন- ধানের বাকানি, বাদামি দাপা রোগের জীবানু।

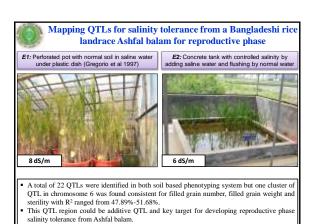

বীজ অক্টেরোদগম- বীজ বাগতির/পারের মধ্যে রেখে ২৫-৩০° সে তাপমাত্রার ২০ ঘন্টা পানিত জিলানে হয়। এবগর পারের নিচে বিক্লু পানি রেখে ৩০° সে তাপমাত্রার ইটারে বাম্প প্রয়োগের মাধ্যমে উচ্চ আর্দ্রতা (>৯৫%) ও ভ্যাপনা গরম অবস্থা তৈরী করে ৩ দিনে বীজ অক্টেরোপার করানো হয়।

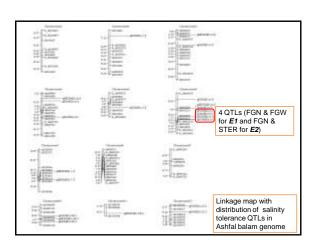
সুবিধা-

- অংকুরি সুনির্দিষ্ট, নিয়য়্রিত এবং নিরাপদ। প্রচলিত জা পদ্ধতি অনিয়য়্রিত ও ঝুকিপূর্ণ।
- ঠাগুয় নিশ্চিন্তে নিরাপদে বীজ অংকুরোদগম করা যায় যা জাগ পদ্ধতিতে সম্ভব নয়।
- বীজ অংকুরোদগম জাগ পদ্ধতির তুলনায় কমপক্ষে ১৫%
 বেশী হয় বলে মূল্যবান বীজ সম্পদ রক্ষা হবে।
- বীজ শোধন করে বীজ বাহিত জীবানু দমন করা যায় বিশেষত ধানের বাকানি, বাদামি দাগ রোগের জীবানু।




Genetic Trend of BRRI Varieties


Group/ Season	Long duration	Medium duration	Short duration		
Boro	14.2	10.9	12.2		
T. Aman	11.6	15.0	10.9		

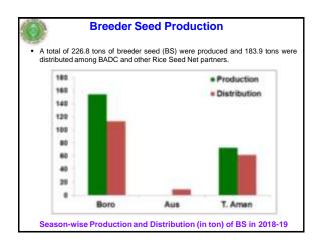

Results expressed as % per year

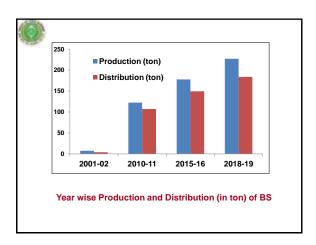
- The relative genetic trend of long, medium and short duration of Boro varieties are about 14.2, 10.9 and 12.2% per year.
- The relative genetic trend of long, medium and short duration of T. Aman varieties are about 11.6, 15.0 and 10.9% per year.

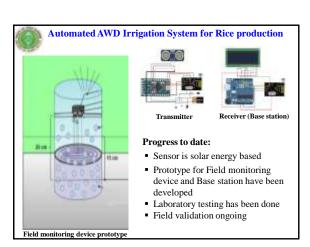
D/S: 01 Nov 2018 D/T: 02 Dec 2018

 Five rice genotypes TP7594, TP16199, BR8907-B-1-2-CS1-4-CS2-P3, BR8562-11-2-6-1-1-1 and BR(Bio)9777-124-1-1-2 were found moderately cold tolerant at reproductive phase.

C4 Rice Research and Development at BRRI


- Kaon/Foxtail millet (Setaria italica) is considered as model C4 plant having small genome size (490 Mb and 2n =18) to discover C4 regulatory
- Mutation of Kaon by NMU (N-nitroso-N-methylurea) followed by low CO2 stress-Chlorophyll fluorescence detection of C4-loss of function and confirmed by resequencing and CRISPR-Cas9 knockout system.

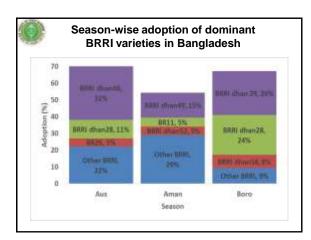



Green house development Training of scientists and technicians

Germplasm collection and characterization in 2018-19

- 119 rice germplasm were collected from Bangladesh
- Morphological characterization of 103 germplasm completed against 51 traits
- Molecular characterization of 142 rice germplasm in which 48 T. Aman germplasm using 54 SSR markers and 94 Aus germplasm using 61 SSR markers were performed.
- 342 germplasm were registered (from accession 8237 to 8578) in BRRI Genebank.
- 59 Jhum rice germplasm were characterized through 11 morpho-physicochemical characters. Of them 19 germplasm had with 20-25% amylose, where Bardia (Acc. 7837) had the lowest (20%).

water resources assesseason crop

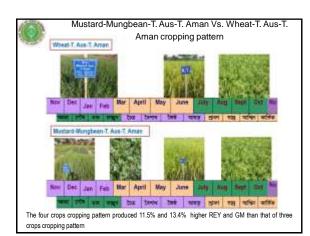

Map showing water resources assessment in polder 43/1

Water resources assessment in polder for dry season crop in coastal region

Outcomes:

- Total stored volume of water when all the canals are trapped: 74,14,503 Cubic meter
- Salinity range: 1-2.2 dS/m
- Estimated crop irrigation coverage:
 - o Boro: 634 ha
 - o Maize: 1800 ha
 - o Sunflower: 4878 ha

Productivity improvement in water-logged coastal zones Different creeping vegetables could be cultivated in waterlogged coastal areas with T. Aman rice by bag system Off-season watermelon could be cultivated on pond bank during wet season It creates avenues to grow vegetables for home consumption and for commercial purposes and thus increased cropping intensity and improved total land productivity.



Cropping pattern with mustard

- BRRI has conducted cropping pattern survey throughout the country.
- 24 Mustard containing cropping patterns identified
- Mustard-Boro-T. Aman was the most dominant cropping pattern
- A wide scale demonstration conducted with Mustard-Boro-T. Aman cropping pattern with 20-50 farmers in each location at Dhanbari, Madhupur, Sreepur and CHT for wider adaptation of this cropping pattern.

	Rice	% Increased of REY	Gross Margin (GM)		
Cropping pattern (CP)	equivalent yield (REY) (t/ha)	over check	TK/ ha	% Increased over check	
Mustard-Boro-T.Aman	14.64	9	49,216	8%	
Fallow- Boro- T.Aman	13.46	-	45,622		
(Check)					

Mustard-Boro-T. Aman cropping pattern gave 9% higher REY and 8% higher gross margin than that of Boro-Fallow-T. Aman cropping pattern.

Improvement of Jhum cultivation through replacement of local rice with the modern Aus rice in hilly areas.

Results:

Six BRRI modern Aus varieties were tested in 19 locations of 8 Upazilas in three Hill districts under Jhum systems. On an average BRRI dhan48, BRRI dhan82 and BRRI dhan83 yielded 3.50, 3.49 and 3.23 t/ha which were 46, 64 and 67% higher than the local varieties.

Performance of exotic date palm (Phoenix dactylifera) in homestead and agro-forestry systems

Salient features

- Exotic date palm (Phoenix dactylifera) might be an excellent component of homestead agroforestry and crop-based agroforestry.
- By this time date fruits have been harvested from 22 plants at Mujibnagar complex in Meherpur.

 Drought-prone belt of Bangladesh hold the potential for date palm
- production

Beneficiary

The farmers who have fallow land in homestead or roadside area.

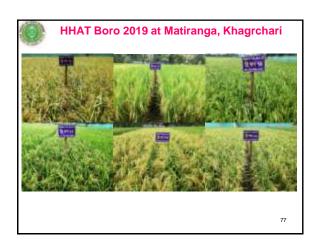


Annual Economic return from Turkey Rearing

Turkey Given (No)	Mortalit y (%)	Present Average Weight (Kg)	Egg (No)	TVC (Tk.)	Gross Return (Tk.)	Gross Margin (Tk.)
50	4	Male: 7-8 Female: 5-6	After 6 months	40,000	1,85,000	1,45,000

^{*} Egg-200 Tk./Hali, Chicken-250 Tk./Piece, Meat-300 Tk./Kg

Yiel	ld increase & soil	health	* Chemical Fert.	nt ■ IPNS (PM)
+ yield (%)	Other Benefits	14	▲ Control	• IPNS (CD)
14	Replace 100% K, improve soil OM	10 -	× × ×	* * * *
18	Replace 100% P, improve soil biology	eld (t/ha)		
11	Replace 100% P, 30% N, improve SOM + biology	Grain yie		****
wdung 22 Improve SOM t /ha) IPNS + biology	2 -	R ² = 0.3468 y = -0.1233x + 253.44	y = 0.6149x - 1228.6 R ² = 0.8681 y = 0.1938x - 380.01	
8.0	Improve SOM	0		R ² = 0.755
7.0	Improve SOM	Yie		
	+ yield (%) 14 18 11 22 8.0	+ vield (%) 14 Replace 100% K, improve soil OM 18 Replace 100% P, improve soil biology 11 Replace 100% P, 30% N, improve SOM + biology 22 Improve SOM + biology 8.0 Improve SOM	+ Other Benefits 14 12 14 12 14 12 14 15 15 15 16 16 16 16 16	+ Other Benefits 14 A Control


(9)	Rice Bran Oil (RBO) is found free from mycotoxins and heavy metal contamination at laboratory condition									
Parameter	As (ppb)	Cd (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	TVC	Yeast & mold (cfu/g)	Toxicity	Aflatoxin (ppb)	
RB-Fresh	<5.0	< 0.05	< 0.5	0.03	< 0.5	10000	50	No	9.79	
DORB- Fresh	<5.0	0.07	< 0.5	< 0.20	< 0.5	11600	300	No	9.43	
RBO-Crude	<5.0	< 0.05	< 0.5	0.03	< 0.5	Nil	Nil	No	Nil	
RBO- Refined	<5.0	< 0.05	< 0.5	< 0.20	< 0.5	Nil	Nil	No	Nil	

Rice Bran Oil By-Product T₁: Control or no fertilizer Application of spent bleaching • T2 : BRRI recommended dose (BRD) earth (SBE), a by-product of RBO . T3: 100% Spent bleaching earth (SBE) as potential organic fertilizer in T₄: 75% SBE + 25% BRD Bangladesh T₅: 50% SBE + 50% BRD T₆: 25% SBE + 75% BRD Treatme Plant Tiller Panicle Grain yield, Straw yield, TGW nt height No. No. dry (t ha-1) dry (g) (cm) (t ha-1) T_1 2.41E 29.33D 144^C 135° 2.26^D 22.6B 5.39^A 23.0^{AB} 37.68^A 256 A 246^A 6.66^{A} \mathbf{T}_{2} **T**₃ 28.57^D 165^C 153^C 3.88^D 2.47^D 22.6^B T_4 31.97^C 198 BC $186^{\,\mathrm{B}}$ 4.65° 3.95^C 23.1^{AB} T_5 34.75 B 240^{AB} 225^{AB} 5.49^B 4.72^B 23.3^A 6.27^A 241^{A} 5.27^A 36.52^{A} 250^{A} 23.2^{A} Fertilizer cost reduction is 17-21% by replacing BRD (BRRI Recommended Dose) by 25%

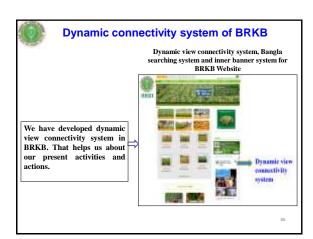
Varieties	No. of Demo.	Total production (ton)	Seed Retained (ton)	Motivated farmers
27 varieties	380	258	41.3 (16%)	6279
Aus 2018 (4)	BRRI dhan2	7, 48, 65, 82		
Aman 2018 (13)	BRRI dhan3	4, 49, 52, 70, 71,	72, 73, 75, 76, 7	7, 79, 80, 87
Boro 2019 (10)	BRRI dhan2	8, 50, 58, 63, 67,	74, 81, 84, 86, 8	9
J. XIII		Ti		

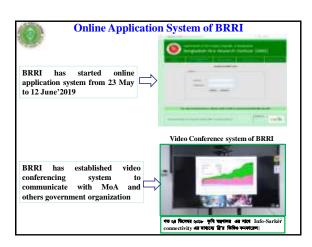
	Promotional Activities: 2018-2019										
	SN	Activit	ies			Numbe	er	Partici	pants		
	1	Field d	ay		60		8000				
	2	Farme techno	rs training logy	on rice		49	1520				
	3	Farme	rs Seed Ce	enter		26		3000			
	Seed Support to Stakeholders: 2018-2019										
s	eason	Variety (no.)	Seed distributed (kg)		keholder ners (no.)		Jpazila overage	District coverag			
	man 018	14	2,256	451		435		72	35		
_	oro 019	11	3,276	654		575		85	44		
Т	otal	25	5.532	1105		1010		157	50		

Promotional Activities: 2018-2019

Seed Support to DAE for Revenue Programme: 2018-2019

Season	Variety (No.)	Seed distributed (kg)	Area coverage (bigha)	District coverage
Boro 2018-19	13	8940	1788	64
Aus 2019	3	6985	1397	64
Total	16	15,925	3185	64





 PPRD made 11 publications in the reporting period of 2018-19 including BRRI Annual Report, Bangladesh Rice Journal, Adhunik Dhaner Chash, BRRI Diary

į					ħ,
					F
	٦	e	**	•	
					÷

মওসুম ভিত্তিক ব্রির জাতসমূহের সম্প্রসারণের পরিকল্পনা

আউশ

- বৃহত্তর সিলেট ও বরিশাল অঞ্চলের পতিত জমিসমূহ চাষের আওতায় আনা যেতে পারে।
- জলমগ্ন পরিবেশ অঞ্চলে পর্যাপ্ত পরিমাণ জমি ব্রি ধান৮৫ এর চাষ করা য়েতে পারে।
- সরাসরি বণনকৃত স্থানীয় জাতসমূহ, ব্রি ধান৬৫ এবং ব্রি ধান৮৩ দ্বারা প্রতিস্থাপিত হতে পারে।
- বোরো-পতিত -আমন (২৭%) শস্য বিন্যাসে বি ধান৪৮ ও বি ধান৮২ অন্তর্ভুক্তকরণের সুযোগ রয়েছে।

আমন

- উপকৃশীয় দক্ষিণাঞ্চলে চাবকৃত স্থানীয় জাতসমূহ ব্রি ধান৭৬ ও ব্রি ধান৭৬ দ্বারা প্রতিস্থালিত হতে পারে।
- উভরাঞ্চলে পুটি বর্ণা, পাল বর্ণা ইড্যাদি পুরাতন জাতসমূহ অতি সম্প্রতি উভাবিত ঘাতসহনশীল ব্রি (খানণ১ ও ব্রি খানণ৫) এবং বিশেষ পুণসম্পন্ন জাত (ব্রি খান৫১, ৫২, ৭২, ৭৯, ৮০ ও ৮৭) দ্বারা অনুকূল ও প্রতিহাপিত হতে পারে।

বোরো

- দক্ষিণাঞ্চলে উপকূলীয় লবনাক্ত এলাকায় ব্রি ধান৬৭ এর আবাদ বৃদ্ধি করা যেতে পারে।
- ব্রি ধান২৮ এর পরিবর্তে ব্রি ধান৭৪, ৮১, ৮৪, ৮৬ এবং ৮৮ আবাদ করা যেতে পারে।
- ব্রি খান২৯ এর পরিবর্তে ব্রি খান৫৮, ৭৯, ৮৯ আবাদ করা যেতে পারে।
- ব্রি ধান৫০ এর পরিবর্তে ব্রি ধান৬৩, ও ৮১ আবাদ করা যেতে পারে।

-	ধানের উৎপাদন	ं ३ উৎ भापनग	লিতা বৃদ্ধি	
	কর্মসম্পাদন সূচক	একক	লক্ষ্যমাত্রা	অৰ্জন (%)
অনুকূল পরিনে	বশে উদ্ভাবিত জাত	সংখ্যা	٥	© (500)
অনুকূল পরিনে	বশে উদ্ভাবিত প্রযুক্তি	সংখ্যা	٥	© (500)
অনুকূল পরিনে	বশে উদ্ভাবিত অন্যান্য প্রযুক্তি	সংখ্যা	œ.	৬ (১০০)
প্রতিকূল পরিং	বশে উৱাবিত জাত	সংখ্যা	٤	২ (১০০)
প্রতিকূল পরিং	বেশে উদ্ভাবিত প্রযুক্তি	সংখ্যা	ą.	২ (১০০)
প্রতিকূল পরিং	বেশে উদ্ভাবিত অন্যান্য প্রযুক্তি	সংখ্যা	œ	@ (500)
প্রশিক্ষিত ব্যবি	ক্ত/কৃষক	সংখ্যা	6000	6500 (500)
প্রশিক্ষিত সম্	শুসারণ কর্মকর্তা/কর্মী	সংখ্যা	2000	2294 (200)
স্থাপিত প্রদর্শন	गे	সংখ্যা	৬২০০	9560 (500)
আয়োজিত সে	মিনার/ওয়াকশপ	সংখ্যা	99	৬১ (১০০)
কৃষি সম্প্রসার	ণ অধিদপ্তরের নিকট হস্তান্তরিত জাত	সংখ্যা	œ	@ (500)
কৃষি সম্প্রসার	ণ অধিদপ্তরের নিকট হস্তান্তরিত প্রযুক্তি	সংখ্যা	œ	@ (500)
উদ্ভাবিত/উন্নয়	নকৃত কৃষি যন্ত্ৰপাতি	সংখ্যা	2	2 (200)
প্রকাশনার সং	খ্যা	সংখ্যা	22	55 (200)
কৃষি মেলাতে	অংশগ্রহণ	সংখ্যা	ಅಂ	৩২ (১০০)

খানের ব্রিডার বীজের সহ	জলভ্যতা ও স	ারবরাহ বৃদ্ধিক	রণ
কর্মসম্পাদন সূচক	একক	লক্ষ্যমাত্রা (২০১৮-১৯)	অর্জন (%)
অনুকূল পরিবেশে উৎপাদিত ব্রিডার বীজ	মেট্রিক টন	200	SF4 (200)
অনুকূল পরিবেশে উৎপাদিত মান ঘোষিত বীজ	মেট্রিক টন	೨೦	2F2 (200)
অনুকূল পরিবেশে বিতরণকৃত ব্রিডার বীজ	মেট্রিক টন	200	১ 9২ (১০০)
অনুকূল পরিবেশে বিতরণকৃত মান ঘোষিত বীজ	মেট্রিক টন	೨೦	225 (200)
প্রতিকূলতা সহনশীল জাতের উৎপাদিত বীজ	মেট্রিক টন	২ ২	Ø2 (200)
প্রতিকূলতা সহনশীল জাতের বিতরণকৃত বীজ	মেট্রিক টন	২২	৩৯ (১০০)
কৌশলগত কর্মসম্পাদন সূচকের অগ্রগতি	নম্বর	90	96 (200)
আবশ্যিক কর্মসম্পাদন সূচকের অগ্রগতি	নম্বর	২ ৫	২২ (৮৮.০০)
ব্রি'র বার্ষিক কর্মসম্পাদন চুক্তির অগ্রগতি	নম্বর	500	৯৭ (৯৭.০০)

BRRI	ভবিষ্যত চ্যালেঞ্জ
3 ==== 3 ==== 3 ==== 0 === 0 === 0 === 0 === 0 === 0 ===	মোট জনসংখ্যার সাথে প্রতিবছর যোগ হচ্ছে ২২ লক্ষ নতুন মৃথ কৃষি শ্রমিক ও জমি ক্রমশঃ হ্রাস পাচ্ছে সময়মত ধান রোপণ ও কর্তনের জন্য কৃষি শ্রমিকের অপ্রতুলতা ফসলী জমির উপরিস্তরের মাটি কৌশলে ক্রয় করে ইট ভাটায় ব্যবহার জলবায়ু পরিবর্তনের কারণে খরা ও লবণাক্ততাসহ বিভিন্ন অভিঘাত বাড়ছে অপরিকল্পিত নগরায়ণের কারণে ধানী জমি সংকৃচিত হচ্ছে উদ্ভাবিত প্রযুক্তি সম্প্রসারণে দীর্ঘসূত্রিতা ও ফলন পার্থক্য বীজ সরবরাহ ও বিতরণ ব্যবস্থা ও নিমুমানের বীজ অবৈধভাবে সীমান্ত পার হয়ে আসা

Research Thrust

- Breaking yield ceiling
- C4 rice for improving photosynthetic efficiency
- Short duration cold tolerant boro variety for haor area
- Development of aerobic and water saving rice
- Blast resistant high yielding Boro variety
- Heat tolerant short duration Boro and T. Aus rice
- Development of multiple stress tolerant varieties
- Meeting the consumers preference of high quality rice

Brewing for a better today and tomorrow

Research Thrust (Contd.)

BRRI •

- Nutritionally enriched rice with pharmaceutical and export perspective
- High yielding premium quality rice for national standard
- Development of super hybrid rice research
- Genomics, Genome editing for better physiology and better crops
- Eco-friendly cost-effective, location & ecosystem specific pests & disease management and production packages
- Portable and low-cost farm machineries
- Crop intensification with sustainable soil health
- Development of precision agriculture including nano technologies

Brewing for a better today and tomorrow

Variety Selection and Genetics Plant type Architecture (incl. tillering ability) Leaf design (light interception) Root morphology Disease resistance Insect and Disease resistance Stem strength Synchronous maturity Potential yield with quality

কৃতজ্ঞতা স্বীকার

- সকল গবেষণা বিভাগ, আঞ্চলিক কার্যালয়সমূহ
- পরিকল্পনা ও মূল্যায়ন বিভাগ
- কৃষি মন্ত্রণালয়
- দাতা সংস্থা
- ব্রি প্রশাসন বিভাগ
- আন্তর্জাতিক ধান গবেষণা প্রতিষ্ঠান (IRRI)
- Access to Information (a2i)

