Sl. No.	Program Area/Project (Duration)	Major Objective	Expected output	Annual Budget (Thousand Tk.)
		Plant Breeding Division	on	/
		Proposed Research Programn	ne 2022-23	
	Program Area: Va	rietal Development program (VDP)		
1	Development of Upland Rice (Broadcast Aus)	Development of varieties in combination of multiple traits such as quick seedling emergence and vigorous growth, short growth duration (90-95 days), tolerance to lodging, drought and pre-harvest sprouting and good eating quality.	For B. Aus, promising lines/ varieties will be developed with short duration: 90-95 days, yield potential: 4.0- 4.5 t/ha, with early vigor.	1000
	Development of Jhum/Hill Rice	Development of high yielding rice variety with low (10-19%) to intermediate (20-25%) and high (25%) grain amylose content and drought tolerance suitable for Jhum cultivation	For Jhum rice, high yielding rice variety with low (10-19%) to high (>25%) grain amylose content and drought tolerance along with good eating quality for jhum cultivation acceptable to tribal of Chattogram hill districts will be developed.	700
2	Development of Transplanted Aus (T. Aus) Rice	Introgression of earliness, pre- harvest sprouting tolerance and tolerance to high temperature into high yielding varieties for developing rice varieties with slender grain, short growth duration and resistance to major diseases under field condition.	Promising lines/ varieties will be developed with better yield potential (5.0– 5.5 t/ha) and shorter growth duration (105- 110 days) in comparison to existing varieties	2000
3	Improvement of rice for shallow flooded & Deep- water environment	Development of high yielding (4.0- 5.0 t/ha) rice varieties for shallow flooded area (up to 1.0 m depth), shallow deep area (30 cm water) and medium deep area (50-60 cm water) along with submergence, facultative	High yielding (4.0-5.0 t/ha) rice varieties for shallow flooded area (up to 1.0 m depth), shallow deep area (30 cm water) and	1500

Proposed Research Program 2022-2023

		1 , 11 , 1	1. 1	
		elongation and hypoxia tolerance.	medium deep area	
			(50-60 cm water)	
			along with	
			submergence,	
			facultative elongation	
			and hypoxia tolerance	
			will be developed.	
4	Development of	Introgression of genes from	Short duration	
	Rainfed Lowland	diverged genetic background for the	varieties (105-115	
	Rice (RLR) (T.	improvement of standard T. Aman	days) with 4.5-5.0	
	Aman)	varieties.	t/ha yield potential	
	,		and medium duration	5000
			(116-130 days)	0000
			varieties with 6.0-7.0	
			t/ha yield potential	
			· -	
5	Davalormart of	Introgramming of colimity tolevert	will be developed. Promising Salt	
5	Development of	Introgression of salinity tolerant	0	
	Salt Tolerant Rice	traits/ gene (s) in high yielding	tolerant lines/salt	
	for T. Aman and	varieties suitable for RLR and	tolerant varieties will	
	Boro Season	irrigated Boro ecosystem.	be developed with	
			seedling stage (EC 14	
			dS/m) & reproductive	
			stage tolerance (EC 8-	10000
			10 dS/m) and better	10000
			yield potential (5.5-	
			6.5 t/ha for the	
			T.Aman and 7.5-8.0	
			for Boro season) in	
			comparison to	
			existing varieties	
6	Development of	Introgression of genes for small &	National and	
	Premium Quality	long slender grain with aroma,	international grade	
	Rice (PQR) for T.	photosensitivity and Anti-oxidant	0	
	Aman and Boro	property into high yielding genetic	Kataribhog, Basmati,	
	Season	background for the development of	Jasmine, Banglamoti	
	Scasoli		and BRRI dhan34	
		national and international grade		7000
		aromatic rice.	type) high yielding	
			aromatic varieties	
			with earliness, good	
			plant type, anti-	
			oxidant potential will	
			be developed.	
7	Development of	Development of new genotypes	Rice varieties for	
	favorable Boro	based on the farmers and consumers	favorable irrigated	5000
	Rice	preference with better plant type	ecosystem will be	5000
		and major insect and disease	developed with high	
•		· · ·		

		resistance.	yield potential (7.0- 8.5 t/ha), earliness to long duration and	
			acceptable grain quality.	
8	Development of Cold Tolerant Boro Rice	Introgression of cold tolerance gene into high yielding rice genetic background.	Cold tolerance rice varieties will be developed for cold affected northern, western and Haor region with high yield potential (6.5-7.5 t/ha).	8500
9	Development for Micronutrient Enriched Rice (ZER) for T. Aman & Boro	Development of new genotypes with high iron and zinc content along with resistance to major insect pests and diseases, and acceptable grain quality.	Rice varieties with high iron and zinc content with resistance to major insect pests and diseases and acceptable grain quality will be developed.	5000
10	Development of Insect Resistant Rice (IRR) for T. Aman & Boro Season	Introgression of genes of BPH and gall midge into high yielding rice genetic background.	BPH and Gall midge resistant variety will be developed with better yield potential (5.5-6.5 t/ha for T. Aman and 7.0-8.0 t/ha for irrigated Boro season).	3000
11	Development of Disease Resistant Rice (BB, Blast & RTV) for T. Aman and Boro season	Introgression of high yield, lodging tolerance and disease resistance trait for BB, Blast & RTV.	BB, Blast and RTV	2500
12	Development of Submergence and Water Stagnation Tolerance Rice	Development of high yielding (yield target 6.0-6.5 t/ha, in stress condition 5.0 t/ha) rice varieties tolerant to submergence (flash flooding) and medium stagnant water (MSW) stresses with high yield potential, short/long growth duration, weakly/strongly	High yielding rice varieties with different growth duration and three weeks submergence, stagnant flood and anaerobic germination tolerances with yield	2500

		photoperiod sensitivity, grain quality etc.	target 6.0-6.5 t/ha in normal condition and 5.5 t/ha in stress condition.	
13	Development of Water Saving Rice	Development of short duration water-use-efficient rice genotypes with 10% more yield than the check varieties under transplanted alternate wetting and drying (AWD) & aerobic condition.	Short duration water- use-efficient rice genotypes with 10% more yield than the standard check varieties will be developed for Boro season under transplanted alternate wetting and drying (AWD) & aerobic condition.	1500
14	Development of Drought Tolerant Rice for T. Aman Season	Introgression of drought tolerance genes into high yielding rice genetic background.	Drought Tolerant Varieties for T. Aman season will be developed with potential yield target (5.0 - 6.0 t/ha).	3000
15	Deployment and Validation of High Beta-carotene Rice and High-Iron & Zinc Rice Varieties (Healthier Rice Project), T. Aman and Boro 2020-21	Development of new genotypes with high Beta Carotene (Vitamin- A) content along with resistance to major insect pests and diseases, and acceptable grain quality.	Development of high yielding rice varieties with enhanced Provitamin A, high Iron and Zinc content in polished rice grain.	5000
16	International Network for Genetic Evaluation of Rice (INGER)	Promising genotypes will be selected after evaluation and will be used as parent materials and also will be included in yield trial.	U U	500
		Biotechnology Divisio	n	
		Proposed Research Program:	2022-23	

Sl. No.	Program Area/Project (Duration)	Major Objective	Expected output	Annual Budget (Thousand Tk.)
	Program Area/Proj	ect (Duration): Varietal Developmer	nt program (VDP)	
1	Development of premium quality rice (Kalizira type) variety through anther culture	To develop high yielding premium quality rice DH lines through anther culture	High yielding premium quality rice lines (Kalijira Type) will be developed.	100.0
2	Development of Aus variety	To develop short duration high yield Aus rice variety through anther culture	e	100.0
3	Development of high yielding photosensitive rice variety through anther culture	To develop photosensitive rice variety	Photosensitive rice lines will be developed	50.00
4	Development of low glycemic index (GI) rice variety	To generate low glycemic index rice through anther culture	Low glycemic index rice lines will be developed	100.0
5	Development of antioxidant enriched black rice variety through anther culture	To develop antioxidant enriched high yielding black rice	Antioxidant enriched high yielding black rice lines will be developed	100.0
6	Development of salt tolerant rice variety through anther culture	To develop salt tolerant double haploid rice lines	Salt tolerant double haploid rice lines will be developed.	100.0
7		to develop long slender rice variety with high kernel elongation (>1.7	Long slender rice lines with high kernel elongation will be developed	500.0
8	Development of somaclonal variants using EMS treated rice seed	To develop modern rice varieties for Aus and T. Aman	Modern Aus and T. Aman rice lines will be developed	200.0
9	Development of antioxidant enriched black rice variety through somaclonal variation	To create somaclonal variation for development of antioxidant enriched high yielding modern rice variety	Antioxidant enriched high yielding modern rice lines will be developed	150.00
10	Preliminary Yield	To evaluate further yield potential	Aus rice lines will be	50.00

	Trials (PYT) in T. Aus 2022	of advance breeding lines.	developed	
11	Development of premium quality rice (Kalizira type) variety through somaclonal variation	To create somaclonal variation towards development of high yielding premium quality (Kalijira type) rice varieties	Premium quality (Kalijira type) rice lines will be developed	50.00
12	Effect of hormone on plant regeneration of rice genotypes	optimization of regeneration protocol for transformation studies	Regeneration protocol will be developed	100.0
13	Effect of incubation days on callus induction and plant regeneration of rice genotypes	to observe the effect of day on calli production and regeneration	Regeneration protocol will be developed	100.0
14	DevlopmentofHighyieldingvarietythroughsomaclonalvariation	To create somaclonal variation towards development of high yielding rice variety	High yielding variety rice lines will be developed	100.0
15	Development of high yielding premium quality rice variety through somaclonal variation	To create somaclonal variation and select rice lines with high yield and desirable premium quality traits	Premium quality somaclone rice lines with high yield and desirable traits will be developed.	100.0
16	Development of variants using EMS of BRH-11-9-11-4- 5B(CN6) having reduced sterility	To reduced sterility of BRH-11-9- 11-4-5B (CN6)	High yielding with reduced sterility BRH-11-9-11-4-5B (CN6) rice lines will be developed	100.0
17	Development of high yielding short stature aromatic Kilizira type varieties using EMS	To develop high yielding short stature aromatic Kilizira type varieties	High yielding short stature aromatic Kilizira type rice lines will be developed	100.0
	LIND		1	
18	Development of Sheath Blight resistant rice through mutation by EMS	To develop Sheath Blight resistant lines High yielding lines through	Sheath Blight resistant rice lines will be developed High yielding rice	150.00

	High yielding rice	mutation by EMS.	lines will be	
20	by EMS treatment Development of Premium Quality Rice through Mutation by EMS (Ethyle Methanesulfonate)	To create somaclonal variation for developing high yielding, short growth duration and short stature plant type aromatic rice lines.	developed Premium Quality rice lines with high yield, short growth duration will be developed.	100.0
21	Developing rice variety through wide hybridization followed by embryo rescue	To develop high yielding rice lines through wide hybridization followed by embryo rescue technique.	High yielding and short duration rice lines will be developed.	100.0
22	Marker assisted selection for fragrance gene	To develop high yielding aromatic rice	High yielding aromatic rice lines will be developed	100.0
23	Development of photosensitive high yielding rice variety	To identify genomic location controlling photosensitivity.	Photosensitive high yielding rice lines will be developed	50.00
24	Marker assisted selection for aromatic and submergence tolerance rice genotype	To develop high yielding submergence tolerant aromatic rice variety	High yielding submergence tolerant aromatic rice lines will be developed	50.00
25	Marker assisted selection for developing short stature Biroi rice	To develop high yielding biroi type rice varieties	Short stature Biroi rice lines will be developed	50.00
26	Isolation and cloning of drought tolerant genes from wheat	Isolate and cloning of drought tolerance gene	Drought tolerance gene will be isolated for the development of drought tolerant rice lines	200.0
27	Development of salt tolerant transgenic rice	To develop salt tolerant transgenic rice lines	Salt tolerant transgenic rice lines will be developed	500.0
28	Introgression of salt tolerant mangrove gene.	To develop salt tolerance transgenic rice lines	Salt tolerant transgenic rice lines will be developed	500.0
29	Development of salt tolerant transgenic rice	To develop salt tolerant transgenic rice lines	Salt tolerant transgenic rice lines will be developed	500.0
30		To develop high yielding aromatic rice lines using CRISPR-Cas9	High yielding aromatic rice lines	500.0

	aromatic rice lines through genome editing	technology.	will be developed	
31	Identification of <i>Setaria italica</i> mutants losing C4 properties.	Characterizing <i>Setaria italica</i> mutant population for loss of C4 functions	C4 rice lines will be developed	500.0
32	VariationofBADH2genesequencesinricegenotypes	To investigate the nature of the fragrance gene (frg) in local aromatic cultivars	Variation of fragrance gene (<i>frg</i>) in local aromatic cultivars will be identified	500.0
		Hybrid Rice Division	1	
		Proposed Research Program:	2022-23	
SI. No.	Program Area/Project (Duration)	Major Objective	Expected output	Annual Budget (Thousand Tk.)
	grain containing hy	ent of parental materials for high yi brid rice variety	ield, high amylose cont	ent and fine
1.1	Project: Developme	ent of parental materials for high y brid rice variety 3	ield, high amylose cont As much as cross will	ent and fine 75,000.00
1.1	Project: Developme grain containing hy Duration: 2022-202 Program leader- Dr	ent of parental materials for high yi brid rice variety 3 . Md. Jamil Hasan Identification of prospective maintainers and restorers from diverse genetic origin 1. Confirmation of maintainers and restorers from the crossed entries, 2. Selection of heterotic rice hybrids,	, , , , , , , , , , , , , , , , , , ,	
	Project: Developme grain containing hy Duration: 2022-202 Program leader- Dr Source Nursery	ent of parental materials for high yi brid rice variety 3 7. Md. Jamil Hasan Identification of prospective maintainers and restorers from diverse genetic origin 1. Confirmation of maintainers and restorers from the crossed entries, 2. Selection of heterotic rice hybrids, 3. Conversion of prospective materials into new CMS lines. Developing CMS lines from identified suspected maintainer	As much as cross will be initiated New B & R lines will	75,000.00
1.2	Project: Developme grain containing hy Duration: 2022-202 Program leader- Dr Source Nursery Test cross Nursery Backcross Nursery CMS Maintenance and Evaluation	ent of parental materials for high yi brid rice variety 3 . Md. Jamil Hasan Identification of prospective maintainers and restorers from diverse genetic origin 1. Confirmation of maintainers and restorers from the crossed entries, 2. Selection of heterotic rice hybrids, 3. Conversion of prospective materials into new CMS lines. Developing CMS lines from	As much as cross will be initiated New B & R lines will be identified New CMS lines will	75,000.00
1.2	Project: Developme grain containing hy Duration: 2022-202 Program leader- Dr Source Nursery Test cross Nursery Backcross Nursery CMS Maintenance	 ent of parental materials for high yill brid rice variety 3 . Md. Jamil Hasan Identification of prospective maintainers and restorers from diverse genetic origin 1. Confirmation of maintainers and restorers from the crossed entries, 2. Selection of heterotic rice hybrids, 3. Conversion of prospective materials into new CMS lines. Developing CMS lines from identified suspected maintainer lines by back crossing. Maintain and evaluate of CMS lines for genetic purity and subsequent 	As much as cross will be initiated New B & R lines will be identified New CMS lines will be developed Genetic purity of CMS lines will be	75,000.00 100,000.00 80,000.00

	x R) crosses.	recombinant lines	developed	
1.7	Evaluation of Fatema dhan and its generation advancement	To select fix lines from Fatema dhan	Fixed lines of Fatema dhan will be developed	70,000.00
1.8	Evaluation of MST (Multi-Stress Tolerant) lines	To identify prospective maintainer and restorer lines having MST traits	B & R lines will be identified in the background of MST	70,000.00
1.9	Development of Blast resistant hybrid	 Searching genotypes containing both blast disease resistant genes and Restorer genes Making cross to transfer blast resistant genes into elite Restorer background 	Blast tolerant hybrid variety will be developed	100,000.00
1.10	Parental line characterization using diagnostic trait markers (SNP markers) through outsourcing	To find out suitable hybrids having genes of interest like good biochemical properties and stress resistance	Gene of interest of parental materials will be identified and resistant and heterotic group will be formed accordingly	500,000.00
1.11	New parental line development using FRGA method using RxR and BxB crosses (F_2 to F_5 crosses)	Developing new parents to produce new cross combination derived hybrids	New recombinant B & R lines will be developed in short possible time	300,000.00
1.12	Salinity resistant hybrid	 Searching genotypes containing both salinity resistant genes and Restorer genes Making cross to transfer salinity resistant genes into elite Restorer background 	Salinity tolerant hybrid variety will be developed	100,000.00
	Project-2: Breeding Duration: 2022-23 Program leader- Du	; for BB resistant hybrid rice variety r. Anowara Akter		
2.1	Development of disease resistant parental lines (BB)	To develop new CMS and restorer lines resistance to disease (BB) and find out heterotic rice hybrid combinations having resistance to disease (BB)	BB resistant parental lines as well as hybrids will be developed	200,000.00
2.2	Screening of existing maintainers and restorers against BB resistance.	To identification of BB resistance maintainers and/or restorers from existing materials.	New source of BB resistant maintainer lines will be identified	80,000.00

2.3	Screening of	To identification of blast resistance	Blast resistant B & R	70,000.00
	existing maintainers and restorers against Blast resistance.	maintainers and/or restorers from existing materials.	lines will be identified	
2.4	Source Nursery	Identification of prospective maintainers and restorers of diversified origin for making experimental rice hybrids.	As much as cross will be initiated	60,000.00
2.5	Test cross Nursery	 Confirmation of maintainers and restorers from the crossed entries. Selection of heterotic rice hybrids. Conversion of prospective maintainers into new CMS lines 	New B & R lines will be identified	50,000.00
2.6	Backcross Nursery	Developing BB resistant CMS lines from identified maintainer by back crossing.	New CMS lines will be developed in the background of BB	200,000.00
	Project-3: Evaluation	on of parental materials & hybrids	6	
	Duration: 2022-202			
	Program leader- Pr	ogram leader- Dr. Mosammat Umm	a Kulsum	
3.1	Observational Trial (OT) of experimental hybrids	Selection of promising hybrids	Selection of promising hybrids	85,000.00
3.2	Preliminary Yield trials of promising hybrids	To study the wider adaptability and yield potentiality of promising hybrids	Selection of promising hybrids	200,000.00
3.3	Multi-location trials of promising hybrids	To find out promising hybrids with high yield potential and higher adaptability	Selectionofpromisinghybridswithwideradaptability	500,000.00
3.4	Combining ability of A, B & R lines	To select the best combiner (S) in respect of grain yield & yield components	SCA & GCA will be identified	85,000.00
3.5	National Hybrid Rice Yield Trial (NHRYT)	Evaluation of imported hybrids for subsequent selection	Potential hybrids will be selected	Funded by SCA
3.6	Quality ensure of previous season produced F_1 and CMS lines through grow out test	To determine purity of parental lines and hybrids of BRRI released hybrid rice	Ensure quality of CMS & F1 seeds	50,000.00
3.7	Evaluationofexotic hybridsandparentaland	To evaluate adaptability and yield performance of exotic materials	Better adaptability of exotic lines will be identified	200,000.00

	source materials			
	$(A, B, R \& F_1)$			
3.8	Demonstration trials of BRRI released hybrids along with promising hybrids and checks	To evaluate the performances of released hybrids with promising ones	Selection of best hybrids compared with check varieties	50,000.00
3.9	Identification of promising combiners developed using iso-cytoplasmic restorers (ICR)	To determine the selected ICR lines for assessing their potential in hybrid development	Promising combinations will be identified based on GCA & SCA	100,000.00
3.10	Breeding for outcrossing potentials in CMS lines	To select best CMS lines for enhancing seed production of hybrid rice	Potential CMS lines with good OCR will be identified	200,000.00
		duction of Parental lines and Hybrid	ds	
	Duration: 2022-202	-	D I	
4.1	0	r. Md. Jamil Hasan and Dr. Hafizar		200.000.00
4.1	of promising CMS lines	To produce pure and good quality seed of CMS lines for subsequent use.	Sufficient quantity of CMS seeds will be available	200,000.00
4.2	CMS multiplication of BRRI hybrid dhan1 & BRRI hybrid dhan4	Production of pure and good quality seed of CMS lines.	Sufficient quantity of CMS seeds of BHD1 & BHD4 will be available	200,000.00
4.3	CMS line multiplication of BRRI hybrid dhan2	Production of sufficient quantity quality seeds of CMS lines for subsequent use	Sufficient quantity of CMS seeds of BHD2 will be available	150,000.00
4.4		Production of sufficient quantity quality seeds of CMS lines for subsequent use	Sufficient quantity of CMS seeds of BHD3 will be available	300,000.00
4.5	CMSlinemultiplicationofBRRI hybrid dhan5	Production of sufficient quantity quality seeds of CMS lines for subsequent use	Sufficient quantity of CMS seeds of BHD5 will be available	300,000.00
4.6	CMSlinemultiplicationofBRRI hybrid dhan6	Production of sufficient quantity quality seeds of CMS lines for subsequent use	Sufficient quantity of CMS seeds of BHD6 will be available	300,000.00
4.7	CMS line multiplication of BRRI hybrid dhan7	Production of sufficient quantity quality seeds of CMS lines for subsequent use	Sufficient quantity of CMS seeds of BHD7 will be available	150,000.00
4.8	CMS line multiplication of BRRI hybrid dhan8	Production of sufficient quantity quality seeds of CMS lines for subsequent use	Sufficient quantity of CMS seeds of BHD8 will be available	150,000.00

1.0				200.000.00
4.9	F ₁ seed production of BRRI hybrid	Production of sufficient quantity quality hybrid seed for subsequent	Sufficient quantity F1 of BHD2 & BHD4	200,000.00
	dhan2 & BRRI hybrid dhan4	use	will be available	
4.10	F ₁ seed production of BRRI hybrid dhan3	Production of sufficient quantity quality hybrid seed for subsequent use	Sufficient quantity F1 of BHD3 will be available	600,000.00
4.11	F ₁ seed production of BRRI hybrid dhan5 & BRRI hybrid dhan7	Production of sufficient quantity quality hybrid seed for subsequent use	Sufficient quantity F1 of BHD5 & BHD7 will be available	850,000.00
4.12	F ₁ seed production of BRRI hybrid dhan6	Production of sufficient quantity quality hybrid seed of promising hybrids for subsequent use	Sufficient quantity F1 of BHD6 will be available	300,000.00
4.13	F ₁ seed production of BRRI hybrid dhan8	Production of sufficient quantity quality hybrid seed of promising hybrids for subsequent use	Sufficient quantity F1 of BHD8 will be available	400,000.00
4.14	F ₁ seed production of promising hybrids	To produce sufficient quantity of seed for PYT and MLT	Sufficient quantity F1 of promising hybrids will be available	350,000.00
4.15	Growth duration differentiation method (GDDM) for synchronization in flowering	To determine proper heading time of parental lines (A & R) of promising hybrids	Determination of actual growth duration difference between A & R lines will be identified	50,000.00
4.16	NucleusseedproductionofBRRI hybrid dhan1& BRRI hybriddhan4	To produce parental lines nucleus seed of BHD1 & BHD4	Nucleus seeds of parental lines of BHD1 & BHD4 will be produced	70,000.00
4.17	NucleusseedproductionofBRRI hybrid dhan2	To produce parental lines nucleus seed of BHD2	NucleusseedsofparentallinesofBHD2willbeproduced	70,000.00
4.16	NucleusseedproductionofBRRI hybrid dhan3	To produce parental lines nucleus seed of BHD3	NucleusseedsofparentallinesofBHD3willbeproduced	70,000.00
4.17	NucleusseedproductionofBRRI hybrid dhan5	To produce parental lines nucleus seed of BHD5	NucleusseedsofparentallinesofBHD5willbeproduced	70,000.00
4.18	Nucleus seed production of	To produce parental lines nucleus seed of BHD6	Nucleus seeds of parental lines of	70,000.00

	BRRI hybrid dhan6		BHD6 will be produced	
4.19	NucleusseedproductionofBRRI hybrid dhan7	To produce parental lines nucleus seed of BHD7	Nucleus seeds of parental lines of BHD7 will be produced	70,000.00
4.20	NucleusseedproductionofBRRI hybrid dhan8	To produce parental lines nucleus seed of BHD8	Nucleus seeds of parental lines of BHD8 will be produced	70,000.00
4.21	Maintainer and restorer lines multiplication of promising and released hybrids	Production of sufficient quantity quality parental lines for subsequent use Genetic Resources and Seed Divi	Seed multiplication of released & promising B & R lines will be made sion (GRSD)	100,000.00
		Proposed Research Program:	2022-23	
Sl. No.	Experiments /Activities	MajorObjective(s)	Expected output	Budget (Lakh Tk.) source
	Project 01: Rice Germplasm Conservation and	Collection, characterization, conservation and rejuvenation of rice germplasm to enrich the		11.05 GOB
	Management.	Genebank of BRRI and its sharing with rice researchers.		
1.1	Management. Collection of rice (Oryza sativa L.) germplasm.	Genebank of BRRI and its sharing with rice researchers. To collect cultivated and wild rice germplasm from unexplored areas of Bangladesh and to store the collected rice germplasm for different users.	 Collected germplasm will be conserved safely and documented along with their characters in Genebank and in computer database. Conserved germplasm with valuable traits will be made available for utilization as parent material(s) for developing new variety(s)/genotype. 	

	(<i>Oryza sativa</i> L.) germplasm.	germplasm from unexplored areas of Bangladesh and to store the collected rice germplasm for different users.		
1.3	Rejuvenation and conservation of rice germplasm.	To rejuvenate the Genebank accessions with fresh stock and to register the new collection by giving BRRI Genebank accession number after cross checking the duplication.		0.15
1.3	Rice germplasm supply and exchange.	 i. To provide/supply rice germplasm accessions from BRRI Genebank to different divisions of BRRI for screening against biotic and abiotic stresses. ii. To share germplasm to researchers from home and abroad with prescribed MTA for rice 		0.80
		improvement.		
1.4	Morphological characterization of rice germplasm.	To characterize rice germplasm as per BRRI prescribed "Germplasm Descriptors and Evaluation Form" as developed from biodiversity international and UPOV convention.		1.00
1.5	Documentation of rice germplasm.	To document the characterized rice germplasm through morpho- physiological data, digital photo, leaflet and to develop a computer database documentation system for different users.		
1.6	Molecular characterization of rice germplasm.	To characterize the rice germplasm through molecular tools (DNA Fingerprinting).		5.00
2	Project 02: Exploratory and Genetic Studies.	Exploratory and genetic studies of rice germplasm.		8.15 GOB
2.1	Regional Yield Trial (RYT) of Balam rice germplasm.	To confirm the yield potentiality of popular Balam rice germplasm of southern region of Bangladesh by comparing with standard check.	The genetic parameters/genetic studies of respective year will be helpful for varietal development and other plant breeding	1.00

			related issues	
2.2	Regional Yield Trial (RYT) of Sada Mota rice germplasm of southern region.	To confirm the yield potentiality of popular Sada Mota rice germplasm of southern region of Bangladesh by comparing with standard check.		1.00
2.3	Selection of superior genotypes from T. Aman/ Boro rice germplasm based on agro- morphological traits.	To identify rice germplasm with higher total biomass yield and higher phenotypic acceptance.		0.50
2.4	Observational Yield Trial (OYT) of aromatic rice germplasm.	To evaluate the yield performance of ten aromatic rice germplasms compared to standard check.		0.40
2.5	DNA Finger printing of rice germplasm.	To characterize the rice germplasm through molecular tools (DNA Fingerprinting).		1.00
2.6	Evaluation of Photo-sensitive rice germplasm collected from Northern districts of Bangladesh.	To identify rice germplasm suitable for late transplanting after flood in northern region of Bangladesh (Bogura, Kurigram, Lalmonirhat, Gaibandha, Rangpur and Jamalpur).		0.25
2.7	Characterization of similar named groups of rice germplasm.	To characterize and evaluate the similar named groups of Nazirsail and Basmoti rice germplasm accessions for developing their core collections.		0.50
2.8	Crossing between Chinisail and BRRI dhan90.	To improve the grain quality with better yield		0.50
2.9	Purification of selected Jirasail genotype.	To purify the selected popular Jirasail genotypes for evaluation of its yield performance by comparing with standard check.		0.30
2.10	Molecular characterization of pigmented rice germplasm.	To characterize pigmented rice germplasm using SSR markers.		0.60
2.11	Identification and selection of Sticky rice from Jhum rice	To identify and to study the selection criteria for developing sticky rice varieties from Jhum rice		0.60

	germplasm.	germplasm.		
2.12	Conformation of selected blast resistant materials using differential blast isolates and molecular markers.	To be conform the resistance of the selected genotypes.		0.50
2.13	Morphological and Molecular study of Badshabhog germplasm.	To characterize the rice germplasm through morphological and molecular tools (DNA Fingerprinting).		1.00
3	Project 03: Seed Production and Variety Maintenance	Maintenance of nucleus seed stock and production for supplying breeder seeds as per national demand		89.80 GOB
3.1	Nucleus seed production.	To maintain genetic purity and homogeneity of morphological characteristics of BRRI developed rice varieties as a source of breeder seed.	 Varietal purity (both genetic and physical) will be maintained. Breeder seed will be supplied to GO, NGOs and private sector seed producing organizations. Limited quantity of quality seed (QS) will be supplied to other divisions/Region al stations of BRRI and farmers directly or through DAE personnel for experimental/exh ibition purpose 	0.90
3.2	Maintenance of BRRI recommended HYVs and LIVs.	To maintain the BRRI recommended HYVs (High Yielding Variety) and LIVs (Locally Improved Variety) for encouraging farmers to cultivate and for any other purpose.		0.20

3.3	Breeder seed production and	To produce and supply of breeder seed of BRRI developed rice		85.0
	distribution.	varieties as per indent of GO, NGOs and PS seed producing		
		organizations/companies/entrepren		
		eurs.		
3.4	Sending <i>khudebarta</i>	To make it easy for our clients to		0.50
	(SMS) for Breeder Seed Distribution.	get the information of BS distribution.		
3.5	Monitoring of	To visit breeder seed plots of BRRI		0.80
	breeder seed	regional stations at flowering and		
	production farms.	maturity stages for ensuring the		
		quality of produced seed as BS standard.		
3.6	Monitoring of	To visit foundation seed (FS) plots		0.60
	foundation seed	of seed producing agencies at		
	production farms.	flowering and maturity stages for		
		improving the quality of produced seed as FS standard by sharing		
		experiences.		
3.7	DNA	To characterize the latest BRRI		1.00
	Fingerprinting of	varieties through molecular tools		
	latest BRRI	(DNA Fingerprinting).		
	varieties (continue).			
3.8	Effect of regional	i. To determine viable period of		0.50
	variation of weather	seed in different storage.		
	-	ii. To determine speed of		
	harvest processing	germination and germination percentage.		
	and seed storage on	porooniuge.		
	seed quality of			
2.0	BRRI dhan89.			0.20
3.9	Dormancy and storage ability of	To find out dormancy duration and storage ability of newly released		0.30
	newly released	BRRI rice varieties (after BRRI		
	BRRI rice varieties.	dhan64) during storage.		
4	Project 04: Seed	Studies on seed technology for	The quality seed	1.5 GOB
	Technology	recommending as modern rice	production related	
	Packages.	seed production technology.	important/current problems at farmers'	
			field will be solved	
			with appropriate	
			recommendations	
			through the	
			developed seed	

			technology package		
4.1	Publication on seed production technology package.	To make seed technology knowledge available to the growers by preparing leaflet on seed production techniques for BRRI Rice Seed Network partners.		1.20	
4.2	Digital rice herbarium.	To easily identify difference between different BRRI variety in a look.		0.30	
		Grain Quality and Nutrition	Division		
		Proposed Research Programme	e -2022-2023		
SI. No.	Program Area/Project (Duration)	Major Objective	Expected output	Annual Budget (Thousand Tk.)	
	Program Area: varietal Development				
	1.	Grain Quality Characteristics for	Varietal Development		
1.1	Determination of physicochemical and cooking properties of advanced rice breeding lines.	To help to develop data base on physicochemical, cooking and eating qualities of grain for newly developed breeding lines	Grain quality data from breeding lines will be generated for development of new rice variety.	2.5 GOB	
1.2	Determination of physicochemical and cooking properties of transforming rice breeding lines	To find out the physicochemical and eating quality of promising lines for identifying better grain quality.		TRB Funded	
1.3	1.3: Effect of Zn and phytate activities on Zn enriched rice varieties at different locations in T. Aman season	To determine the Zn and phytate activities with physicochemical properties of Zn enriched rice varieties at different locations in T. Aman season		0.5 GOB	
1.4	Nutraceutical Characterization of newly released BRRI varieties	To determine nutraceutical properties including antioxidants, minerals, fatty acid and amino acid profiling's of BRRI released HYVs from BR1 to BRRI dhan100 and BRRI hybrid1 to BRRI hybrid dhan7 along with their		2.0 GOB	

		physicochemical and cooking	
		properties	
	2	. Grain Quality parameters for Cons	sumer Preference
2.1	2.1: Analysis of ferulic acid (FA) in RBO of Bangladeshi rice varieties in association of biochemical evaluation on burning effects of RBO in vivo rat experiment	analysis methodology and studyamount of FA and their relation tonutrition properties in rice.2. To evaluate the burning effects of	0.5 GOB
2.2	2.2: A study on the different components of rice in relation to the palatability	grain through comparison of different components of rice samples that are responsible for palatability	1.0 GOB
	2.3: To Screening, Selection, and Training of Sensory Panelists	 To determine impairment of primary senses (colour, vision, ageusia and anosmia) To matching test for taste and odor substances To ability to detect basic taste and odor acuity To determine ability to characterized texture To performance in comparison with other candidates 	1.0 GOB
		3.Nutritional Quality Asses	sment of Rice
	3.1: Fatty acid profiles and nutritional quality of rice bran oil (RBO) in BRRI high yielding varieties	 To identify the varieties containing higher amount of oil content To analyze the fatty acid profile, heavy metal and nutritional value of rice bran oil 	1.5 GOB
	3.2: The effect of fermentation on the nutritional and microbial changes in panta bhat	 To evaluate the nutritional properties of panta bhat To determine the starch digestibility and bioavailability of mineral content To evaluate the microbial properties and beneficial effect of 	1.0 GOB

	panta bhat		
3.3: Comparative study on rice bran oil (RBO) produced from BRRI varieties with existing RBO available in the market (Recommendation from BARC provided and 2021)	 To observe the chemical properties of RBO To analyze the FA profile, heavy metal and nutritional value of RBO 		1.0 GOB
workshop-2021) 3.4: Assessment of heavy metals (Cd, Zn, Pb, Cr, As) in soil, water, and rice grain from industrial area (Dhaka, Gazipur, Narayangonj, Mymensingh, Narshindi etc.)	 To quantify heavy metals in soil, water, and rice grain. To identify area of rice field contaminated by industrial effluent water. 		1.0 GOB
3.5: Standardization of in vitro Glycemic Index (GI) method to evaluate GI value of rice	 To standardize the in vitro GI method To assess the variability of GI value through in vitro starch digestibility of physicochemically different BRRI varieties 		3.0 GOB
	4.Commercial Rice Base	ed Products	
4.2: Survey on rice based value added products available in the market (Recommendation from BARC workshop-2021)	 To find out BRRI varieties are used commercially for producing rice based products To analyze the nutritional quality of value added rice based products in the market 		3.0 GOB
4.3: Formulation of rice-based foods supplemented with anthocyanin-enriched fermented rice bran (New)	 Physicochemical and biochemical characterization of pigmented anthocyanin rich rice varieties. Genome sequencing and analysis of gene expression in the anthocyanin biosynthesis pathway in selected Bangladeshi rice 		GQN- KGF- OFANS Project Funded 2022-24 (3 years)

		varieties. 3. Formulation of anthocyanin- fortified rice-based bakery products with fermented rice bran Rice Farming Systems Div	vision	
		Proposed Research Program:		
Sl. No.	Program Area/Project (Duration)	Major Objective	Expected output	Annual Budget (Thousand Tk.)
		Program Area: Rice Farming	g Systems	ι
1	Survey			
1.1	Characterization of farming system of Charlands	To characterize and generate information on the farming system and identify problem and prospects of Charlands in Noakhali, Barishal, Rangpur, Sirajganj, Faridpur and Bhola regions for exploring its opportunities of improvement	Pros and cons will be drive-out and based on the survey result new experiment will be formulated in char area.	500
2	Development of Cr	opping System and Component Tech	nology for Favorable E	nvironment
2.1	Performance evaluation of four- crop cropping pattern for irrigated medium high land ecosystem (2022-2027)	 i) To evaluate the agronomic and economic performance of three crops cropping pattern ii) To assess the soil fertility, water requirement and pest infestation in different cropping patterns 	Profitable, water efficient and sustainable four- cropped cropping pattern(s) will be found.	200
2.2	Performance evaluation of three- crop cropping pattern for irrigated medium high land ecosystem (2022-2027)	 i) To evaluate the agronomic and economic performance of three crops cropping pattern ii) To assess the soil fertility, water requirement and pest infestation in different cropping patterns 	Profitable, water efficient and sustainable three- cropped cropping pattern(s) will be found.	300
2.3	Long-term evaluation of major rice based cropping pattern 2020-2022	i) To determine the long-term implication of two, three and four cropped cropping pattern on system productivity, economics, weed and pest infestation, water and other input use, soil health, nutritional and energy output	Profitable, water efficient and sustainable two, three and four-cropped cropping pattern(s) will be found.	500
2.4	Determination of optimum planting window of newly	i) To find out the suitable rice varieties for Boro-Fallow-T. Aman cropping pattern under different	Suitable variety and optimum sowing/planting	200

	1 1 1	1		
	released rice	planting time	window of mustard,	
	varieties in	ii) To find out the optimum	Boro and T. Aman	
	Mustard-Boro-T.	sowing/planting window of	rice for Mustard-	
	Aman cropping	mustard, Boro and T. Aman rice for	Boro-T. Aman	
	system.	Boro-Fallow-T. Aman cropping	cropping pattern will	
	2022-2024	pattern	be developed.	
2.5	Exploration of water logged wetland ecosystem through integrated fish, vegetable and fruit production. 2022-2026	 i) To explore the best adaptation practices to address the water logged wetland condition ii) To enrich the nutrient consumption, production diversity and risk mitigation 	Scope of increasing productivity of water logged wetland ecosystem will be identified.	500
2.6	Land-Water interfacing with rice-fish, vegetables, fruit to Intensify the system productivity. 2022-2024	i) To diversify and maximize production of pond-based farming system.ii) To improve nutritional level of consumers and increase farm income	Development of shallow mini pond system to maximize the food production	400
2.7	Transformation of waterlogged wetland into three- tier system for integrated rice-fish, vegetables and fruit production. 2022-2025	 i) To increase productivity and production diversity through integrating rice-fish, vegetables and fruits ii) To meet up the nutritional requirements of the farm family throughout the year and increase income 	The productivity of water logged wetland ecosystem will be increased.	300
2.8	Evaluation of newly released BRRI rice varieties under Boro - Fallow-T. Aman cropping pattern. 2022-2025	i) To find out the suitable crop sequence with newly released BRRI rice varieties in Boro -Fallow-T. Aman cropping pattern	Suitable crop sequence with newly released BRRI rice varieties in Boro- Fallow- T. Aman cropping pattern will be developed.	200
2.9	Optimizing transplanting window of premium quality T. Aman rice varieties under different and changing climatic conditions in Bangladesh using ORYZA V3.	 i) To determine the effects of sowing dates, seedling age and transplanting dates for popular premium quality T. Aman rice varieties having different growth duration ii) To utilize the rice crop data in simulation modeling by ORYZA v3 to determine optimum transplanting window, sowing time and seedling 	Transplanting window will be developed after ORYZA model simulation.	200

	2020-2022	age, target yields and develop		
	2020-2022	associated management		
		recommendations for increased rice		
		yields and higher water		
		productivity.		
2.10	Optimizing transplanting window of premium quality Boro rice varieties under different and changing climatic conditions in	i) To determine the effects of sowing dates, seedling age and transplanting dates for popular premium quality Boro rice varieties having different growth duration ii) To utilize the rice crop data in simulation modeling by ORYZA v3 to determine optimum transplanting	Transplanting window will be developed after ORYZA model simulation.	200
2.11	Bangladesh using ORYZA v3. 2020-2022	window, sowing time and seedling age, target yields and develop associated management recommendations for increased rice yields and higher water productivity		250
2.11	Determine the effect of nutrient management practices on premium quality rice variety/(s) for improved yield, grain quality, and milling traits. 2020-2022	To develop site-specific tailored management practice to improve the yield potential and quality aspects of PQR rice varieties	For the improvement of grain quality, suitable nutrient management strategies will be developed.	350
2.12	On-farm performance evaluation dry direct seeded rice (DSR) as compared with transplanted rice (TPR) in Aus season. 2020-2022	Determine comparative advantages and disadvantages of different methods of crop establishment in DSR with respect to TPR for some newly released Aus varieties	Appropriate establishment method for different land type were developed for selected varieties	250
2.13	Effect of sowing date and establishment methods on yield and productivity of newly released Aus rice varieties. 2020-2022	 i) Determine comparative advantages and disadvantages of DSR with respect to TPR ii) Identify suitable sowing dates for newly released Aus rice varieties 	Appropriate sowing date and establishment method for different land type were developed for selected varieties	150
3	Development of Cro	opping System and Component Tech	nology for Stress Prone	Area

3.1	Intensification of Watermelon- Fallow-T. Aman cropping pattern by inclusion of Aus rice. 2021-2023	i) To find out the suitable BRRI released rice varieties for Watermelon-T. Aus-T. Aman CP ii) To maximize the production and farm	Suitable rice varieties will be found to fit under Watermelon-T. Aus-T. Aman cropping pattern	200
4	Development of Cro	opping System Technologies for Hill	Ecosystem	
4.1	Exploring the hills for rice research: Feasibility study for exploring spring water for Boro cultivation. 2022-2023	 i) To explore available water resource (Chhara) in hilly areas ii) To expand Boro rice cultivation using low lift pump (LLP) for irrigation in Fallow-Fallow-T. Aman cropping pattern iii) To increase the overall rice production in hilly areas 	Potential area of Boro cultivation will be identified.	350
4.2	Exploring the hills for rice research: Feasibility of Boro rice cultivation in fringe land at Rangamati district. 2022-2023	To increase the Boro coverage across the fringe land by cultivation of different Boro rice varieties	Potential area of Boro cultivation will be identified.	200
4.3	Improvement of Jhum production system through the introduction of modern HYV Aus varieties in hilly areas. 2021-2023	To increase the system productivity through the introduction of modern HYV Aus varieties and to compare their performance with the local varieties in jhum culture	Appropriate HYV varieties will be identified for the cropping pattern specified.	250
4.4	Inclusion of mustard in Boro- Fallow-T. Aman cropping pattern in piedmont plain land. 2021-2023	To increase the system productivity of Boro-Fallow-T. Aman cropping system by the inclusion of mustard	Farmers will understand the importance of growing mustard throughout the transition phase in order to boost system productivity.	450
4.5	Intensification of Fallow-Fallow-T. Aman cropping pattern through the inclusion of modern Aus rice in piedmont plain	To increase the system productivity of Fallow-Fallow-T. Aman cropping system by inclusion of Aus rice	In single T. Aman area farmers would have a general concept of how to cultivate aus before T Aman rice.	350

	land in hilly areas.			
4.6	2021-2023 Fertilizer management in HYV Aus rice in Jhum cultivation system. 2021-2023	 i) To develop a suitable method of fertilizer application in HYV Aus under jhum cultivation ii) To increase fertilizer use efficiency through proper management 	For Jhum systems, the best nutrient management approach will be designed.	250
5	Validation and Deli	very of Cropping System Technolog	y	
5.1	Evaluation of newly released BRRI rice varieties under Potato-Boro- T. Aman cropping pattern. 2021-2023	 i) To find out the suitability of newly released BRRI rice varieties under Potato-Boro-T. Aman cropping pattern ii) To maximize the production and farm income 	Appropriate rice varieties will be identified for Potato- Boro-T. Aman cropping pattern that will maximizes the production and income.	250
5.2	Validation and delivery of site specific rice based improved cropping patterns in different agro ecosystem across the country. 2021-2027	i) To increase the system productivity and income of the farmers through introduction of improved and intensified cropping systems	System productivity will be increased.	3200
5.3	Potato-Jute-T. Aman cropping pattern in enclaves of northern Bangladesh (ID- 672) 2021-2022	To increase the farm productivity in farmer's level	Cropping intensity will be higher and total production of farmers will increase.	500
5.4	T. Aman rice- Mustard-Patshak- Aus rice cropping pattern for Mymensingh (ID089); 2021- 2022	To increase the farm productivity in farmer's level	Cropping intensity will be higher and total production of farmers will increase.	500
5.5	Novel plant growth promoting (PGP) bacterial and fungal bio pesticides for sustainable management of	To increase the farm productivity in farmer's level	Sustainable method to control bacterial blight of rice will be developed.	300

5.6	bacterial blight of rice (ID-091); 2021-2022 Formulation of energy dense rice biscuit (EDRB) (ID-099); 2021-	To alleviate malnutrition among different groups of people	High quality rice biscuit will be developed.	350
6	2022 Integrated Farming	svetome		
				1
6.1		egrated Farming Systems for Differen esource Poor Farm Household	t Farm Categories for In	nproving the
6.1.1	Characterization of the farming systems research and development site. 2021-2022	To identify geographical location, physical, biological, social and economic conditions, infra- structural condition, existing farming systems, resource situation, problem and prospect of the FSRD site	Physical, biological, social and economic conditions, infra- structural condition, existing farming systems, resource situation, general problems of the FSRD site will be generated.	200
6.1.2	Monitoring the whole farm activities of intervened farmers. 2022-2025	i) To determine the livelihood improvement of the farmers resulted from the intervention of farming systems technologiesii) To determine the resource flow in the selected farm family	The income of the farm families under different farm categories will be increased through intervention of improved farming systems technologies	1000
6.1.3	Integration of mustard/potato/pul ses in the rice- based cropping system under different rice growing environments. 2021-2025	 i) To increase the system productivity by inclusion of mustard, potato and pulses in the existing cropping systems ii) To identify the impact of large scale demonstration of improved cropping pattern on farmers livelihood improvement 	Improved cropping pattern will be disseminated in the trial area which will increase the income of the farm families.	300
6.1.4	Farmers' participatory evaluation of recently released BRRI varieties for Boro and T. Aman season. 2021-2025	 i) To find out the suitable T. Aman and Boro varieties for different rice growing ecosystems ii) To disseminate these varieties for achieving higher production over the existing varieties 	Suitable newly released T. Aman and Boro varieties will be adopted in the trial area which will increase the cropping system productivity.	200

6.1.5	Farmers' participatory quality seed production of recently released BRRI varieties for Boro and T. Aman season. 2022-2025 Field days and farmers' training on different farming systems activities. 2021-	 i) To demonstrate the quality rice seed production technique at farm level ii) To expedite the delivery systems of good quality seeds among the farmers'' community To motivate farmers for adoption of FSR technologies ii) To improve farmers' knowledge base on improved agricultural production system 	Quality rice seed will be available at farmer's level. Farmer's knowledge about new technologies will be increased.	200
	2025	Agronomy Division		
		Agronomy Division		
		Proposed Research Programme		
Sl. No.	Programme area/Project (Duration)	Major Objective	Expected Output	Annual budget Thousand Tk.
		Program Area: Crop Soil Water	Management	
		Seeds and seedlings		
1	Effect of Nanoparticles to reduce Chilling Stress in Rice	To mitigate chilling stress of rice seedling by nano ZnO	An effective alleviation method against chilling stress in rice seedling will be identified.	100
		Fertilizer Managemen	nt	
2	Growth stage based nitrogen management for yield maximization of Hybrid rice	 To investigate hybrid rice response to different nitrogen fertilizer levels and timing of application at different growth stage. To determine nitrogen use efficiency of BRRI hybrid rice varieties. 	strategy for maximizing yield of hybrid rice will be developed.	150
3	Effect of BRRI Biofertilizer on growth and yield of BRRI dhan34	To find out the benefit of BRRI biofertilizer with inorganic fertilizer for BRRI dhan34.	The effect of BRRI biofertilizer on growth and yield of BRRI dhan34 will be identified.	120
4	Effect of BRRI Biofertilizer on growth and yield of	To find out the benefit of biofertilizer with inorganic fertilizer for Boro varieties.	The effect of BRRI biofertilizer on growth and yield of	160

	Boro varieties		rice will be identified.	
5	Effect of foliar application of chitosan on growth, yield and physio-biochemical characteristics of rice under salinity stress	 To investigate the effect of chitosan on growth, yield and Na: K ratio of rice under salinity stress. To evaluate biochemical indicators like proline and MDA content 	An effective salinity alleviation method using chitosan will be developed.	100
		Weed Management		
6	Performance of herbicide to reduce Azolla infestation from rice field	To reduce the abundance of Azolla from rice fields	Appropriate Azolla management option will be developed.	100
7	Residue analysis of herbicide, insecticide and fungicide in soil, water and rice under irrigated ecosystem	To analyze the MRL of pesticides in water, soil and rice	The MRL of pesticide in water, soil and rice will be identified.	180
8	A survey on weed diversity in different Agricultural regions of Bangladesh	 To know the weed management option and to formulate recommendation of standard herbicides with appropriate doses in different ecosystem. To formulate a weed database with major or minor weeds in rice ecosystem. To investigate the distribution and severity of weed flora prevailing in different agricultural regions. To identify the emerging weed problems and directions for improved weed management in upland and lowland rice. 	Emerging weed problems and directions for improved weed management in upland and lowland rice will be identified.	300
9	Assessment of yield and economic losses in rice due to weeds in Bangladesh	 To find out the actual yield loss in farmers level due to weed infestation. To find out the potential yield loss in different locations of Bangladesh. 	The actual yield loss in farmers' level of Bangladesh due to weed infestation will be identified.	300
		Yield Maximization		
10	Effect of	1. To study contributions of	The best production	180

	agronomic factors for maximizing yield of BRRI developed PQR rice type like Katarivog (BRRI dhan70) and Jesmin (BRRI dhan80) through developing sustainable production management protocol in T Aman season	agronomic factors to maximize yield of BRRI dhan70 and BRRI dhan80 in T Aman season 2. To find out and recommend the best production management protocol for sustainable higher yield of BRRI dhan70 and BRRI dhan80 in T Aman season	management protocol for higher yield of BRRI dhan70 and BRRI dhan80 will be developed.	
11	agronomic factors for maximizing yield (10 t/ha) of	 To study some agronomic factors for high yield contribution of long duration BRRI variety (BRRI dhan92) in Boro season To find out the best production management protocol for sustainable higher yield of the long duration variety. 	The best production management protocol for higher yield of BRRI developed long duration variety will be developed	150
12		 To 1. study the effect of Agronomic most critical factors for yield maximization of newly BRRI developed Boro varieties To find out and recommended the most appropriate Agronomic critical factors packages for yield maximization of newly BRRI developed Boro varieties. 		150
13	Effect of agronomic factors for maximizing yield (7 t/ha) of medium duration BRRI variety	 To study contributions of some agronomic factors to high yield of a medium duration variety (BRRI dhan94) in T Aman season To find out the best production management protocol for 	The best production management protocol for higher yield of BRRI dhan94 will be developed.	150

	(BRRI dhan94) through developing sustainable production management protocol in Aman season	sustainable higher yield of medium duration T Aman BRRI variety (BRRI dhan94).		
		Soil health manageme	nt	
14	Biodegradation of pesticides in soil using selected microbial strains	pesticides on bacterial growth	Pesticide degradable soil bacteria will be identified and their degradation process will be explored.	100
15	Screening of Salt- tolerant bacteria isolated from coastal saline soils in Bangladesh	To screen out potential salt-tolerant bacterial strains isolated from coastal saline soil.	Potential salt-tolerant bacterial strains will be screen out.	100
16	Characterization and identification of salt-tolerant PGPR isolated from coastal saline soils in Bangladesh	 To characterize the potential salt-tolerant bacterial strains. To identify the salt-tolerant bacterial strains using 16S rRNA gene sequence. 	The beneficial plant growth-promoting traits of the selected bacterial strains will be identified.	110
17	Effect of PGPR and chemical fertilizers on the growth and yield of salt-tolerant rice under saline soil condition	 To observe the effect of PGPR inoculation on plant salinity tolerance. To observe the effect of nitrogen and gypsum application on salt-stress reduction in plants. 	Integrated approach on soil salinity management could be developed.	150
		Molecular Trait Manage	ment	
18	Physiological, biochemical and molecular mechanisms of salinity tolerance in rice	To get insight into the physiological, biochemical and molecular mechanisms by which BRRI developed salt-tolerant varieties respond to the salinity stress	The possible salinity tolerance mechanism of BRRI developed salt-tolerant varieties will be identified,	120
19	Agronomic and bio-molecular traits of BRRI released drought tolerant rice	 To identify enzymatic activities in drought stress of rice. To identify drought tolerant mechanism of BRRI released variety for enhancing agronomic productivity 	Drought tolerant mechanism of BRRI released variety for enhancing agronomic productivity will be explored.	130

	Soil Science Division				
	Proposed Research Programme 2022-2023				
SI. No.	Project title and Expt.	Objectives	Expected out put	Annual budget (Thousand Tk.)	
		Program Area: Crop Soil Water	Management		
		Sub-sub program I:			
I.	Soil Fertility and Plant Nutrition	To assess fertility status of rice growing areas and determine optimum fertilizer requirement	Fertility Assessment of Rice Soils and Nutrient use efficiency in rice	3450.0	
	1.1 Improvement of rice yield and NUE through nano fertilizer and zeolite amendment (Boro 2018)	• To assess yield and N use efficiency by urea-HA nanohybrid and natural zeolite plus prilled urea (PU) over PU	Improved N use efficiency	500.0	
	1.2. Screening of N use efficient rice genotypes (Boro 2021 to till)	 To find the N use efficient genotypes To find the agronomic traits related to efficient N management GWA mapping of selected NUE lines 	N use efficient rice genotype will be identified	UKRI GCRF SANH Project	
	1.3. Management interventions to improve NUE and reduce N losses in typical rice cropping system of Bangladesh (Boro 2020)	 To quantify the fate of N fertilizer (crop, soil and losses) and NUE under various N managements for double rice cropping. To develop locally based mitigation options that can be compared within plot based experiments. 		UKRI GCRF SANH Project	
	. 1.4 Nitrogen response to ALART material in Boro and T. Aman season (ongoing)	To find out the optimum doses of N for Bacterial Blight ALART materials	Optimum doses of N for ALART materials will be determined	400.0	
	1.5. Updating of nitrogen doses for	• To identify optimum nitrogen dose for MV rice	Economic doses of N for MV rice will be	200.0	

modern rice varieties (T. Aman, 2017 to till)		determined	
1.6. Phosphorus response study of newly released rice varieties (Boro 2017-18 to till)	• To investigate the performance of MV rice under deficient soil P levels	Economic doses of P for MV rice will be determined	200.0
1.7. Potassium fertilizer management in rice-based cropping patterns in Old Himalayan Piedmont Soil (2022 to open)	 To identify the K deficiency in soil To determine the K contribution for different crops (rice, wheat, maize etc.) To increase crop yield & maintain soil fertility especially for K in the respective cropping pattern 	Economic doses of K for MV rice will be determined in K deficient soil	400.0
1.8. Effect of nitrogen and potassium rates on modern rice cultivation (2003 to till)	 To find out the suitable combination of N and K for MV rice cultivation To study the N and K dynamics in soil and plant 	Interaction of N and K will be determined	400.0
1.9. Nutrient management for growing four crops in a year (T. Aus 2016 to till)	 To evaluate total productivity To assess changes in soil fertility i.e. nutrients depletion or mining 	Nutrients management of 4crops will be determined	500.0
. 1.10. Effect of different micro and ficial nutrients on growth and yield of rice (T. Aman 2019 to till)	 To study the effect of micro & beneficial nutrients on growth and yield of rice To observe the interactions among the different micro nutrients and beneficial nutrients To study the effect of micronutrients and beneficial nutrients and beneficial properties 	Micro and beneficial nutrients on growth and yield increased in rice will be determined	200.0
.1.11. Effect of long-term rice	• To determine the changes occurred in soil carbon and	_	200.0

	farming on the changes of soil nutrient status of BRRI Farm (Boro 2020 to till)	 plant nutrient status of BRRI farm soil To develop a soil fertility map To devise a nutrient dynamics model to estimate the nutrient status on long term basis 	changes of soil nutrient status of BRRI Farm will be determined	
	11.12.Soil profilestudyoftheResearch farms ofdifferentBRRIRegionalstations(Boro 2020 to till)	 To characterize the soils of the research fields of the BRRI Regional stations; To classify the soils according to the world soil classification system. To identify the soil fertility capability classification 	Soil profile of Cumilla, Barisal, Sirajganj, Rangpur and Satkhira will be studiued	300.0
	1.13.RegionalYieldMaximization Trial(RYMT)underRecommendedManagementPractices (ongoing)	 To validate Integrated Improved Management Practices (IIMP) compared with BRRI Recommended Practices (Control) To maximize proper filling of grains in a panicle under IIMP 	Integrated Improved Management Practices (IIMP) will be validated	150.0
		Sub-sub program 2:		
2.	Identification and management of nutritional disorder	Sub-sub program 2:Todetermineupcomingnutritionaldisordersinnutritionaldisordersinunderintensivericeunderintensivericewithdifferentfertilizermanagementpractices		620.00
2.	management of nutritional	To determine upcoming nutritional disorders in rice under intensive rice cultivation with different fertilizer management practices	Upcoming nutritional disorders in rice under intensive rice cultivation will be determinedEffect of organic and inorganic nutrients management practices on soil health	620.00

3.	2.3. Effect of intensive rice cropping on rice yield under continuous wetland condition (Boro, 1971) Sub- Integrated	 To evaluate soil fertility and rice yield changes over time To find out mitigation options of soil health -sub program 3: Integrated nutrient To increase rice productivity with 	Effect of intensive rice cropping (three season) on rice yield and soil health determined management (INM) Impact of INM	120.0
	nutrient management for intensive rice cropping	sustainable soil health.	practices will be determined	
	3.1. Integrated nutrient management for double and triple rice cropping for maximizing productivity (Boro 2008-9 to till)	• To improve land productivity and soil health under intensive cropping system.	INM for double and triple rice cropping for maximizing productivity will be determined	200.0
	3.2. Increase rice yield through organic and inorganic amendment (ongoing)	• To study the effect of vermicompost and silicon on rice grain yield while maintaining soil health	Rice yield will be improved through organic and inorganic amendment	200.0
	3.3. Soil Management to maximize the yield of newly released rice varieties (ongoing)	• To maximize rice yield through organic and inorganic amendments while maintaining soil health in BRRI farm	Newly released rice varieties yield will be maximized through soil management	400.0
	3.4. Estimation of C and N flows in a village and developing methods to improve soil C and N within the system (ongoing)	 To estimate major C and N flows in a village To develop treatments to improve soil C stock and N use efficiency in the farming system 	C and N flows in a village will be determined	500.0
	3.5. Nutrient management under CA in double rice	• To identify the nutrient requirement of crop and to improve soil health under CA	Nutrient management under CA will be determined	NUMAN Project

	cropping system at	practice in Boro-Fallow-T.		
	AEZ 26 (ongoing) 3.6.Good Agriculture Practices (GAP) to Increase Rice Productivity (Boro 2022 to open)	 Aman cropping pattern. To obtain quality and safe rice To sustain crop yield To maintain soil health & minimize environmental pollution 	Quality and safe rice will be produce through Good Agriculture Practices (GAP)	500.0
	S	ub-sub program 4: Soil and Environ	mental Problems	
4.	Soil and Environmental problem	To ameliorate soil & environment related problems	Soil and environment related problems will be ameliorate	300.0
	4.1. Increase Rice Yield through Vermicompost in Coastal Land (ongoing)	• To assess the impact of vermicompost on the yield of rice in coastal saline soil	Impact of vermicompost for the improvement of rice yield in Coastal land will be determined	NUMAN Project
	 4.2. Effect of biochar on rice yield and soil health on problem soils (T. Aman, 2019) 	• To study the effect of biochar on rice yield, nutrient use efficiency and soil health of charland soils	Impact of biochar for the rice yield improvement in Char land will be determined	200.0
	4.3.Effect of chitosan (CTS) coated urea in saline soil for rice cultivation (Boro 2022 to open)	• To determine soil nutrient mineralization (N, P, K, Ca) due to CTS coated urea application	Soil nutrient mineralization (N, P, K, Ca) due to CTS coated urea will be determined	100.0
	4.4. Effects of fertilizer and varietal management on mitigating greenhouse gas emissions from rice cultivation in South-western coastal ecosystems (ongoing)	 To quantify GHG emissions from rice field under different fertilizer and varietal management To develop a technology for increased crop productivity with reduced negative environmental impacts. To develop country specific Emission Factor and national GHG inventory. 	Effects of fertilizer and varietal management on mitigating GHG emissions from rice cultivation in South- western coastal ecosystems will be determined	GoB ADP Program
		Sub-sub program 5: Soil Microbio	2	Γ
5	Soil Microbiology	To improve soil biology and	Soil biology and	1600.0

_	and Biofertilizer	health	health will be improved	
	5.1. Evaluation of BRRI-organic fertilizer for the improvement of rice yield and soil health (Boro 2016 to till)	 To evaluate the efficacy bio- organic fertilizer for growth and yield of rice. To assess the impact of bio- organic fertilizer on soil health 	Synthetic N and K fertilizer use in rice production will be reduced	500.0
	5.2. Microbial characterization of different AEZs soil and formulation of biofertilizer for rice cultivation in acid and saline soil (Boro 2019 to till)	 To assess soil bio-physico- chemical properties of different AEZ's of Bangladesh and characterize potential plant growth promoting bacteria (PGPB) To develop bio-fertilizer using potential microbes for rice cultivation in acid and saline soil 	Soil biology of different AEZ will be determined	500.0
	5.3. Bio-Coated Urea and TSP: a new approach to improve N fertilizer use efficiency (NUE) and crop yield (Boro 2022 to open)	 To formulate a bio-coated urea and Bio-coated TSP fertilizer To determine its efficacy in soil-plant system 	Bio-Coated Urea and TSP fertilizer will be developed as a new approach to improve N fertilizer use efficiency (NUE) and crop yield	300.0
	5.4.Bio-coated urea fertilizer for rice yield enhancement in saline soil (Boro 2022 to open)	 To formulate a bio-coated urea fertilizer and To determine its efficacy in soil-plant system 	Efficacy of bio- coated urea in soil- plant system will be determined	300.0
		Irrigation and Water Managem	ent Division	1
		Proposed Research Programme	e 2022-2023	
SI. No.	Program area/Project (Duration)	Major Objectives	Expected output	Annual budget (000 Tk)
		Program Area: Crop Soil Water	Management	
	Sub Sub Droger	Sub-Program: Water Mana Im I: Improvement of Water Use Ef	8	rigulturo

1	Water Requirement	• To generate water efficient technologies for rice cultivation		
1.1	Determination of physical and hydraulic properties in different soil types 2015-To be continued	physical properties in different soil profiles	Documentation of important soil physical properties for efficient water management	100
1.2	Automated Alternate Wetting and Drying Irrigation System for Rice production 2018-23	 To automate conventional implementation of AWD technology To make the AWD method easy and user-friendly To save irrigation water by precise water level monitoring 	Reducing irrigation cost by 30% water saving	200
1.3	Problems and potentials for crop productivity improvement through water management in the Hilly areas 2015-2023	 To identify problems & potentials of water resources development for agriculture and livelihood improvement in the Hilly area To recommend suitable water management options 	Identification of water resources suitable for agriculture of the area.	100
1.4	Study on water stress tolerance capacity for different advanced rice genotype of BRRI 2015- To be continued	 To quantify water-stress tolerance capacity for different varieties To determine yield of varieties under different water stress condition 	Scaling of water stress tolerance capacity (WSTC) of a particular variety.	100
1.5	Performance evaluation of the proposed rice varieties under different water regimes 2019-To be continued	 To study performance of the proposed rice varieties under different water regimes To evaluate suitable water regimes for proposed lines/varieties of rice 	Determination of water stress tolerance capacity of proposed lines/variety	200
1.6	Improving soil- water availability for crop production	 To determine soil physical properties and water holding capacity of root zone soil layers To measure soil-water retention curves of the soil layers and determine their parameters 	Soil water holding capacity of char land improvement.	100

	2019-23			
1.7	Determining minimum irrigation water requirement of rice at different regions of Bangladesh through water balance from on- farm demand and model simulation 2019-23	 To measure yield response of rice to irrigation application base on on-farm demand and simulated irrigation requirement To figure out variation in irrigation water requirements among different treatments 	Gap between simulated and on- farm demand-based water requirements	200
1.8	Optimization of water use efficiency through sub-irrigation	 To design and installation of a sub-irrigation system in a particular field based on soil physical and hydraulic properties To estimate the total annual water balance in the sub-irrigation system To evaluate the performance of sub-irrigation system 	Feasibility of subirrigation and sprinkler irrigation system in rice cultivation	300
1.9	Irrigation water requirement and rainfall utilization for delayed transplanting of boro rice in different locations of Bangladesh 2021-24	• To find out the variation of irrigation water requirement in relation to the delayed transplanting	Optimum planting window based on maximum utilization of rainfall water.	300
1.10	Impact of different perched water level on yield performance, water use and grain nutritional quality of rice 2022-25	 different growth stags in relation to various water treatments To assess the grain nutritional quality pattern in rice at different perched water levels 	Assessment of different perched water level effects in grain quality and yield performance	200
	Sub–Sub Pro	gram II: Utilization of Water Resou	rces in Rainfed Enviror	iment
2	Water Management for rice cultivation in climate change situation	To obtain optimum rice yield under climate change situation		

2.2	agricultural drought forecasting for mitigating drought in T. Aman rice at Kushtia region 2021-23 Irrigation scheduling of rice (Oryza sativa L.) based on weather forecasting in	 drought model for forecasting To predict water demand through water balance simulation model for rice cultivation 	Irrigation water 100 requirement determination through weather forecasting
	Gazipur 2019-22	for migation seneduling of nee	
	Sub-Sub Progra	m III: Land Productivity Improven	nent in the Coastal Environment
3	Land and Water Resources Use for Sustainable Crop Production	• To increase land and water productivity for improved food security and livelihoods in the coastal zones	
3.1	Assessment of water resources availability suitable for irrigation to increase crop production in tidal areas of Barisal region 2015-To be continued	 To monitor the dynamics of surface water salinity in the dry season at different locations of Barisal region To assess the suitability of water for irrigated crop cultivation. 	Availability of 100 suitable water in different rivers.
3.2	Water resources assessment during dry season crop cultivation in selected polders of coastal region 2017-To be continued	resources during dry season.	Available suitable 100 water in river and canals
3.3	Saline water irrigation strategies for boro rice cultivation in the coastal saline area 2021-24	 irrigation management options for Boro rice cultivation To quantify the ionic stress on plant shoot and root under saline water treatments 	Salinewater400irrigationmanagement optionsfor rice production inthe saline area
	Sub-Sub	Program IV: Sustainable Manager	nent of Water Resources
4	Surface and	• To identify the aquifer	

	Ground Water Assessment	characteristics and quality of groundwater in Bangladesh and its relationship with rainfall		
4.1	Monitoring of groundwater fluctuation and safe utilization in different geo- hydrological regions 1979-To be continued.	 To determine the fluctuation of groundwater level over time and its relationships with rainfall, and To determine water quality for assessing suitability for irrigation. 	Determination of declination rate of groundwater level in different regions of Bangladesh	100
4.2	Conjunctive use of wastewater and fresh water for irrigation in Boro rice cultivation 2020-22	 To determine suitability of wastewaters for Boro rice cultivation. To analyze rice grain sample for heavy metal uptake. 	Proper use of wastewater	100
4.3	Effect on percolation losses and groundwater recharge due to weak plough-pan formed under long term conservation agriculture 2020-22	 To determine amount of irrigation water contributed through deep percolation to ground water recharge under SP and CT. To determine the depth and vicinity of the nearest aquifer. 	Amount of irrigation water contributed to the ground water recharge	200
4.4	Evaluation of available groundwater resources for sustainable crop production in selected locations of Bangladesh 2020-23	 To evaluate fluctuation pattern of GWL To determine the GWL depletion trend 	Withdrawal and recharge pattern of groundwater	200
4.5	Assessment of surface and groundwater quality for irrigation in selected locations of Bangladesh 2019-22	 To determine the surface and groundwater quality parameters To determine the suitability of groundwater for irrigation 	Safe irrigation water sources identification	100
4.6	Change in surface water bodies and	• To find out the relationship between surface water storage and	Change in surface water storage bodies	200

4.7	its impact on groundwater recharge in Barind region of Bangladesh 2021-25	groundwater recharge • To figure out the options increasing surface water storage for enhancing GW recharge and sustainable crop production	and its relation to groundwater recharge	100
4.7	Surface water receding pattern in relation to boro rice establishment in haor region of Bangladesh 2021-25	 To determine weekly/fortnight water receding pattern and a contour map showing the water receding area To determine suitable establishment period for escaping flash flood damage of Boro rice 	Water receding pattern and suitable planting period for Boro rice to escape early flash flood	100
4.8	Reuse of domestic household water for crop production at BRRI farm, Gazipur 2021-25	 To find out the quality of domestic wastewater for irrigation To assess the opportunities of domestic wastewater for irrigation 	area wastewater can be reused for	300
4.9	Assessing on-farm water-use efficiency of BRRI research farm, Gazipur 2021-25	 To find out present irrigation management status of BRRI farm To suggest plan for efficient irrigation management plan for BRRI farm 	Plan to improve water use efficiency of BRRI farm, Gazipur	100
4.10	Present status and potentiality for increasing rice cultivation in surface water irrigation projects of Bangladesh 2021-24	 To determine the present efficiency of major irrigation projects To figure out the improvement options for surface water utilization 	Improvement options of surface water irrigation project	100
4.11	Groundwater use potential for supplemental irrigation for Boro rice production in the haor areas 2022-23	 To assess the groundwater availability for Boro rice cultivation To install tubewells for irrigation development To reduce yield loss due to water stress at the later stage of Boro rice To assess potential command area for the installed STW 	Productivity increasing by mitigating water stress at the reproductive phase of rice	500
4.12	Effectiveness of Surface laid PVC pipe irrigation for	• To develop a portable water conveyance system under undulating condition of haor	Crop coverage expansion by improving irrigation	200

	Boro rice	areas	facilities for Boro	
	cultivation in the haor areas 2022-23	 To minimize irrigation water loss in distribution systems of the LLP schemes To increase irrigation coverage per unit time 	production	
	S	bub-Sub Program V: Utilization of R	enewable Energy	
5	Renewable energy for irrigation	• To identify some renewable energy sources for irrigation		
5.1	Development of a low-cost DC solar water pump for irrigation in Bangladesh 2021-23	 To use a permanent magnet brushless DC motor for operating solar water pump To determine economic feasibility of the pump for rice cultivation 	Optimum panel and pump size	150
5.2	Feasibility assessment of solar pump utilization for irrigation purpose in	 Present irrigation scenario, sources of irrigation water and energy for irrigation pumps Suitability to use of solar energy in irrigation 	Present status of irrigation scenario using solar pump	100
	Chattogram region 2021-22			
	2021-22	ı VI: Climate Change Impact Assess Development	ment and Adaptation Te	chniques
6	2021-22	Development	ment and Adaptation Te	chniques
6	2021-22Sub-Sub ProgramClimatechangeassessmentandadoptionandEffect of irrigationsuspensiononmitigating	• To develop suitable water management techniques and practices in rice cultivation for mitigating and adopting climate change impacts	Suitable irrigation	chniques 0.50
	2021-22 Sub-Sub Program Climate change assessment and adoption and Effect of irrigation suspension on mitigating greenhouse greenhouse gas emission in irrigated rice cultivation 2021-2024	 Development To develop suitable water management techniques and practices in rice cultivation for mitigating and adopting climate change impacts To determine irrigation requirement and yield of Boro rice under varying practices To assess irrigation suspension practices on reducing global 	Suitable irrigation management for reducing global warming potentials	
	2021-22 Sub-Sub Program Climate change assessment and adoption and Effect of irrigation suspension on mitigating greenhouse greenhouse gas emission in irrigated rice cultivation 2021-2024	 Development To develop suitable water management techniques and practices in rice cultivation for mitigating and adopting climate change impacts To determine irrigation requirement and yield of Boro rice under varying practices To assess irrigation suspension practices on reducing global warming potential 	Suitable irrigation management for reducing global warming potentials	

	Farmers' Field			
7.1	Modeling climate change impact on agriculture and developing mitigation and adaptation strategies for sustaining agricultural production in Bangladesh 2020-23	 Assessment and characterization of climatic variability, vulnerability, and extreme events for agri-production under climate change 	 Crop performance scenarios & yield forecasting tool Microbial population dynamics and biological soil health Adaptation strategy for CC Yield reduction and compensation behavior with temperature rise and CO₂ levels C & N footprint for rice production Genotype/breed specific coefficients Genetic coefficients Genetic coefficients Genetic coefficients Genetic coefficients Genetic specific coefficients Genetic coefficients Genetic coefficients Genetic coefficients Genetic of rice, wheat, maize and potato (10 varieties) for CC study GHG emission factor and GWP Mitigation options for GHG emission reduction Carbon sequestration and management decision for sustained production Socio-economic vulnerability index of climate change 	KGF
1.2	Intervention in surface water utilization through integrated minor irrigation schemes for escalating water	cultivation in selected area utilizing less saline surface water.	• A GIS based water resources assessment map for each polder area will be produced at the end of the project. The map will	NUF

	1 1 1	T	1]
	and land productivity in coastal region 2021-24	• Increasing water use efficiency by adopting on-farm water saving technologies.	show crop water requirement basis water resources availability for different crops throughout the year.	
7.3	Increasing cropping intensity in the coastal Barishal and Khulna region through water resources and soil salinity management 2020-23	 Increasing cropping intensity and improving farmer's livelihood by integrated management of less surface water and soil salinity in the coastal Barishal and Khulna region. 	 Fallow land will be under Boro cultivation by using surface water. Land and crop productivity will be increased with double and triple cropping. Improved irrigation and water management technologies will be adopted. High yielding and stress tolerant rice and non-rice crop upscaling contribute national food security 	GoB
7.4	Upscaling of improved water management practices for sustainable productivity in the Haor areas 2022-24	 To document the existing agricultural water management practices for identifying problems and potentials to attain higher productivity in the haor areas. To assess the effect of water stress on the yield of Boro rice and find suitable measures to overcome the problem. To demonstrate performance of suitable water management technologies (AWD irrigation, use of lay flat hose pipe etc.) for the improvement of irrigation efficiency and optimum crop yield. To evaluate the suitability of direct seeding method for labour & water saving and early harvest 	 Higher and sustainable rice production Adoption of improved water management technologies Water saving by around 23% Policy recommendation for agricultural development of haor areas 	KGF

		of Boro for escaping flash flood;		
7.5	Mitigating risk and	 and To explore the possibility of increasing crop production by further irrigation expansion through improved water management innovations in the haor areas. To improve the productivity of 	The possible	ACIAR-
1.5	intensification profitable cropping system intensification practices in the salt-affected coastal zones of the Ganges delta 2021-25	 existing crops and cropping intensity of the system by growing crops in the dry season – particularly in areas where dry- season cropping. To improve productivity and increase cropping intensity by better water and salinity management and reduction of climatic risks. Enhancing individual and institutional capacity building to undertake future independent research in the coastal zone. 	outcomes will be used for boosting up the livelihood of the people of salt- affected coastal zone.	KGF
		Plant Physiology Divisi		
		Proposed Research Programm	ne 2022-23	
Sl. No.	Program Area/Project			Annual Budget (Thousand Taka)
	Area/Project	Proposed Research Programm	ne 2022-23 Expected output	Budget (Thousand
	Area/Project Pro Exploring new sources and advance breeding lines for salinity tolerance from at	Proposed Research Programm Major Objectives	ne 2022-23 Expected output	Budget (Thousand
No.	Area/Project Pro Exploring new sources and advance breeding lines for salinity	Proposed Research Programm Major Objectives gram Area: Crop Soil Water Manag To identify salt tolerant advance breeding lines/genotypes at seedling stage.	Expected output Expected output Expected output Expected output Expected output Salinity tolerant donor and tolerant advance breeding	Budget (Thousand Taka)

	1		1	
	advanced breeding lines for whole growth period at different salinity stress	of the tested lines. 2. To identify the safe level of soil and water salinity for growing the genotypes. 3. To estimate the yield and yield components.	tolerance rice genotypes at reproductive stage which may be released as a salinity tolerant variety or used as donor parents.	
4	Characterization of hybrid varieties for whole growth period at different salinity stress	 To identify the level of tolerance of the tested varieties. To estimate the yield and yield components. 	Salinity tolerance ability of hybrid rice varieties will be identified	150
5	CRISPR-Cas9 mutagenesis of the OsRR22 gene for improving salinity tolerance of rice	To increase salinity tolerance via CRISPR-Cas9-targeted mutagenesis of the transcription factor gene OsRR22.	New salinity tolerant rice through genome editing	2
6	Identification of rice germplasm/advanc ed breeding lines for two weeks flash flood submergence tolerance	To identify tolerant germplasm/advanced breeding line for two weeks of complete submergence at vegetative stage.	New sources of submergence tolerance germplasm/advanced breeding line.	50
7	Screening for stagnant flooding tolerance of Germplasm/advanc ed breeding lines at whole growth period during T. Aman season	 To identify tolerant germplasm for water stagnation condition To observe tillering ability under water stagnation conditions 	Identification of medium stagnation tolerant genotypes	100
8	Study of the relationship between SNORKEL (Sk1 and Sk2) genes and Sub1 gene through mutagenesis of Sub1 gene in rice	 i. To know the relationship between Sub1 and SNORKEL gene after the loss of function of Sub1 gene ii. To observe the elongation ability of the mutants under submerged condition after the loss of function of Sub1 gene 	Relationship between SNORKEL (Sk1 and Sk2) genes and Sub1 gene will be discover under submerged condition	200
9	ConfirmationofperformanceforALART/RYT	To evaluate of ALART/ RYT /AYT materials under control drought condition in the net house.	Drought tolerant genotypes will be identified	100

	/AYT materials			
	under drought stress at reproductive stage			
10	Screening germplasm for drought tolerance at reproductive phase	To identify rice germplasm tolerant to drought stress at reproductive phase.	The best tolerant germplasm to be further used as donor parent for developing future drought- tolerant varieties.	125
11	Evaluation of previously selected germplasm under drought stress at reproductive phase in the rain-out shelter	To find out the correlation of field performance of tested genotypes with the performance under control drought condition in the rain-out shelter	Drought tolerant genotypes will be confirmed under control condition.	150
12	Physiological and biochemical characterization of advanced breeding lines under drought stress at reproductive phase	 To assess the effect of drought stress on growth and yield of the tested genotypes To identify the physiological traits associated with drought tolerance. 	Mechanism of tolerance of tested genotypes will be determined	200
13	Characterization of rice germplasm under drought stress at reproductive phaseusing SSR marker	To study the genetic diversity of the germplasm.	Genetic similarity and cluster analysis together with drought tolerance ability of the germplasm will be identified	200
14		To identify high temperature tolerant lines under controlled condition		150
15		To identify high temperature tolerant lines under controlled condition	High temperature tolerant introgression lines	150
16	Observational yield	To identify high yielding and	Heat tolerant version	100

	trial of high temperature induced spikelet fertility introgression lines in the BRRI dhan28 and BRRI dhan29 backgrounds.	homogenous lines having phenotypic similarity with respective recipient parents.	of BRRI dhan28 and BRRI dhan29	
17	Marker assisted introgression of high temperature induced spikelet fertility QTL (qHTSF4.1) in the background of BRRI dhan48 and BRRI dhan62	To develop high temperature induced spikelet fertility QTL (qHTSF4.1) introgression lines for the Aus and T. Aman (short duration) seasons	Heat tolerant version of BRRI dhan48 (Aus) and BRRI dhan62 (Short duration T. Aman) variety	150
	Screening rice germplasm lines for heat tolerance	To identify new heat tolerant donor and advanced breeding lines.	New sources of heat tolerant donor for high temperature stress (35-38 °C) during flowering can be identified and breeding lines will be selected for future program.	150
	sources of cold	To identify rice genotype which can tolerate low temperature at seedling stage.		100
20	Screening of advanced breeding lines for seedling stage cold tolerance (TRB- Project)	To identify advanced breeding lines which can tolerate low temperature at seedling stage.	Identification of cold tolerant advanced breeding lines	100
	Characterization and evaluation of	To characterize rice genotypes at natural cold condition.	Identification of cold tolerant advanced lines.	100

	some selected rice genotypes for cold tolerance			
22	Screening of advanced breeding lines for cold tolerance	To identify cold tolerant advanced breeding lines for whole growth period.	Identification of cold tolerant advanced lines.	100
23	Effect of polythene covering on seedling raising in Boro season	To identify the most suitable technique for protecting Boro rice seedling from cold injury through optimizing number of opening on polythene cover seedbed	Identification of healthy seedling raising technique under cold sterility.	100
24	Lodging tendency in BRRI developed T Aman varieties	To determine the lodging characters of five BRRI varieties at different planting time.	Lodging tolerance of the tested varieties will be known	100
25	Photo-sensitivity test of some advanced breeding lines	To know the photo-sensitivity of advanced breeding lines and recently released T. Aman varieties	Photo-sensitivity of the tested genotype would be known.	100
26	Photo-sensitivity test of some local germplasm	To know the photo-sensitivity of advanced breeding lines and recently released T. Aman varieties	Photo-sensitivity of the tested genotype would be known.	50
27	Effect of harvesting time on yield and grain quality of rice	 To determine the suitable harvesting time at dry and wet season To estimate the yield loss and grain quality due to early and late harvesting. 	Percent yield loss and grain quality will be known at difference harvesting time.	100
28	Partitioning of dry matter and growth rates at different phenophases in rice varieties with variable doses of nitrogen	To investigate the effect of variable levels of nitrogen on dry matter accumulation and partitioning of rice varieties at different growth period.	Contribution of nitrogen to dry matter production and its effect on growth rates and finally on yield.	150
29	Reduction of pre- harvest sprouting of rice through chemical spraying	To reduce the pre-harvest sprouting spikelet in rice panicle	PHS preventing technology	150
30	Generation of male sterile rice line for two-line hybrid system by editing	1. To generate a novel thermo- sensitive genic male sterile line by editing TMS5 gene via CRISPR/Cas9 for two-line hybrid	Two line male sterile line	150

SI. No.	Programme area/ Project (Duration)	Major Objective	Expected output	Annual budget Thousand Tk.
		Proposed Research Programm	ne 2022-23	
34	Automatic weather station data collection and storage	Weather data collection, delivery, reporting, and storage for automatic weather stations. Entomology Division	Archiving of digital weather data from BRRI headquarter and different regional stations.	150
33	Optimizing chlorophyll fluorescence imaging system for photosynthetic efficiencies of C3 and C4 species in different stress condition	 To identify photosynthetic efficiencies of C3 and C4 species under low CO₂ stress. To explore photosynthetic efficiencies of rice under salinity, submergence and drought stresses. 	Optimized chlorophyll fluorescence imaging protocol for stress detection of C3 and C4 species	200
32	Investigation of anatomical and photosynthetic differences of C3 and C4 species	 To identify leaf anatomical differences between C3 (rice) and C4 (maize, sorghum, kaoun, shayma, sugarcane) species. To explore differences of photosynthetic related parameters between C3 (rice) and C4 (maize, sorghum, kaoun, shayma, sugarcane) species. 	Anatomical and photosynthesis differences of C3 and C4 species.	200
31	Study the effect of exogenous applications of ABA on rice grain development at high night temperature condition	To evaluate the effects of ABA on multiple rice yield-determining parameters an to determine	Yield maximization at high night temperature condition.	150
	TMS5 gene using CRISPR/Cas9 system	system, 2. To evaluate the suitability of the TGMS line in two-line hybrid breeding program		

		Program Area: Pest Manag	gement	
1.	Project: Survey & Monitoring of Rice Arthropods.	To determine the incidence and abundance patterns of insect pests and their natural enemies at BRRI farm and in different AEZ's for better management of rice pests.		
	1.1 Pest monitoring in BRRI farm.Duration: Long term	To study the insect pests and their natural enemy incidence at BRRI farm and to create a database to develop a forecasting system.	Insect pests and natural enemies status will be known from different rice habitats and that will help to developed models or forecast method in a long term.	150,000.00
	1.2 Insect pests and natural enemy in light trap.Duration: Long term	To study the pest and their natural enemy incidence patterns in rice fields and to create a database to develop a forecasting system.	Incidence and peak abundance of insect pests and natural enemies will be throughout the year and help to update the existent databank.	150,000.00
	1.3Survey and monitoring of rice arthropods and yield loss estimation.Duration:Long term	To know the present status of insecticide application. To reduce insecticide application in rice production. To assess the yield loss due to infestation of rice insect pests.	Awareness will be developed among the farmers on judicious use of insecticide. Yield loss (if any) will be determined by insect pest infestation. It will help to farmers to take right decision on insecticide application.	200,000.00
2.	Project: Bio- ecology of Rice Insect Pest and Natural Enemy.	To study the ecology and development of insect pest of rice.		
	 2.1 Behavioral adaptation of RLR in different weather condition. Duration: Mid term 	To identify the effects of temperature on life cycle of rice leafroller.	Population outbreak of rice leafroller will be known in global warming situation.	200,000.00

3.	Project: Biological Control of Rice Insect Pests.			
	3.1 Conservation of natural enemies through eco- engineering Duration: Mid term	To reduce insecticide application in rice production. To save environment from insecticidal pollution. To conserve natural enemies through ecological engineering approaches.	It will reduce pesticide dependency to control insect pest in rice field. It improves biological control of pests by enhancing Arthropods biodiversity.	200,000.00
	3.2 Study on entomogenous fungi to control BPH. Duration: Mid term	infected insects. To explore suitable media for mass production of the entomogenous	Naturally available bio-control agent for BPH management will be known.	200,000.00
	3.3 Study on the biology of green mirid bug an egg predator BPH Duration: Mid	To know the biology and life cycle of green mirid bug.	Biology and life cycle of green mirid bug will be known.	100,000.0
4.	term Project: Crop Loss Assessment.	To determine relationship between pest damage levels and yield losses.		
	4.1 Stem borer species abundance, assessing yield losses & management in rice.	To study the relative abundance of different species of rice stem borers and to determine the yield loss due to their damage.	Relative abundance of different species of rice stem borers and yield reduction due to their infestation will be known.	150,000.00
	Duration: Mid term			
5.	Project:EvaluationofChemicalsandBotanicalsagainstRice Insect Pests.	To evaluate the effectiveness of different botanicals and determine efficacy of different insecticides against major rice insect pests.		

	5.1 Test of different	To evaluate the effectiveness of	New, and effective insecticide(s) will be	300,000.00
	insecticides against major insect pests. Duration: Long term	commercial formulations of different insecticides against major insect pests of rice.	determined and recommended to Sub- PTAC and PATC for registration.	
	5.2 Use of nanoparticle to control rice insect pests. Duration: Mid term	To develop nano-particle based pest management in rice To reduce chemical pesticide load in environment.	Effective nano- particles for rice insect pest management will be identified which will reduce insecticide use in rice field.	300,000.00
	5.3 Effect of insecticides on natural enemies of rice insect pests.Duration: Mid term	To identify relatively safer insecticides for using (if needed) in IPM program.	Environment-friendly insecticides will be identified for insect pest control.	100,000.00
	5.4 IRAC susceptibility test method for BPH and WBPH adult Duration: Mid term	To evaluate the efficacy of selected insecticides group against BPH/WBPH.	Environment-friendly insecticides dose will be identified for insect pest control.	200,000.00
6.	Project: Insecticide Toxicology	To detect insecticide residue in rice.		
	6.1 Residue analysis of different insecticide in rice by using LCMS. Duration: Long term	To detect insecticide residues in rice hull, bran and polished rice. To establish monitoring and guidance on safe use of insecticide in rice field.	The results would contribute to know the residues of different insecticides in rice.	500,000.00
	6.2 Development and validation of analytical methods for multiple pesticide residue determination in rice grain using Liquid Chromatography with Tandem Mass	To develop and validate a multi- residue analytical method for the analysis of chlorantraniliprole, chlorpyrifos, thiamethoxam, carbofuran and isoprocarb in rice grain using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction coupled to LC- MS/MS.	Suitable analytical methods for detect and quantify chlorantraniliprole, thiamethoxam, chlorpyrifos, carbofuran and isoprocarb from rice grain will be developed.	500,000.00

	G ()			
	Spectrometry			
	(LCMS/MS).			
	Duration: Long term			
		To deviation and validate a multi-	Suitable englytical	500.000.00
	6.3 Development and validation of	To develop and validate a multi-	Suitable analytical methods for detect	500,000.00
		residue analytical method for the		
	analytical methods	analysis of chlorantraniliprole,	and quantify	
	for multiple	thiamethoxam and imidacloprid in	chlorantraniliprole,	
	pesticide residue determination in	rice husk and bran by using	thiamethoxam,	
	determination in rice husk and rice	QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe)	chlorpyrifos, carbofuran and	
	bran using Liquid Chromatography	extraction coupled to LC-MS/MS.	isoprocarb from rice husk and rice bran	
	with Tandem Mass			
	Spectrometry		will be developed.	
	(LCMS/MS).			
	Duration: Long			
	term			
7.		Identification of resistant sources		
	Project: Host	against rice insect pests.		
	Plant Resistance.	6 1		
	7.1 Screening of	To identify resistant rice germplasm	Resistant sources	400,000.00
	rice germplasm,	against major insect pests.	against major insect	
	advance line		pests could be found.	
	against BPH,			
	WBPH, GLH.			
	Duration: Long			
	term			
		Development of elite donor for	varieties. Newly	400,000.00
	of BPH resistance	BPH resistance breeding program.	developed lines could	,
	rice introgression		be used in the insect	
	lines through	Development of new breeding lines	resistance breeding	
	marker assisted	for BPH resistance.	program.	
	selection.			
	Duration: Mid			
	term			
	7.3 Identification of		BPH resistant	400,000.00
	BPH resistant	To characterize BPH resistant	materials will be	
	sources from rice	germplasms using BPH resistant	characterized as a	
	germplasm.	linked markers.	source for further use	
			in developing pre-	
	Duration: Mid		breeding materials.	
	term			500.000.00
	7.4 Suppression of	To deviation insect registent rise	Brown planthopper	500,000.00
	serotonin synthesis	To develop insect resistant rice	and yellow stem borer	

in rice using CRISPR Cas9 for insect control. Duration: Mid term 7.5 Resistance mechanism in BRRI dhan33 to gall midge Duration: Mid term	 variety. To reduce insecticide dependency in pest management. Identify the gall midge resistance gene in BRRI dhan33. Identify polymorphisms in parental lines, BRRI dhan33 and BRRI dhan49 and isolate the responsible gene by genetic linkage analysis. 	resistance rice variety will be developed. Gall midge resistance mechanism in BRRI dhan33 will be discovered. Novel gall midge resistance gene from BRRI developed variety will be identified.	200,000.00
7.6 Pyramiding three BPH resistance genes (Bph2, Bph20, & Bph32) using marker-assisted selection in BRRI dhan89 Duration: Mid term	Develop three/two gene pyramiding lines using marker assisted breeding. Evaluate the effects of BPH- resistant lines carrying different R genes after infestation with BPH.	Two/three gene pyramiding lines using marker assisted breeding will be developed.	400,000.00
8. Project: Molecular Biology of Rice Insect Pests.	To dissect the genomic diversity of rice arthropods.		
8.1 Molecular characterization of stem borer in Bangladesh based on COI analysis Duration: Mid term	To assess a gene diversity of stem borer in Bangladesh. To know the impact of geographic location in stem borer genomic structure.	Genetic diversity of YSB will be known. Identify new or invasive species.	200,000.00
8.2 Gene drive to control Nilaparvata lugens. Duration: Mid term	To assess a gene drive strategy to control the insect pest that threatens the staple food production in Bangladesh.	New crop protection approach will be established and invasive pest like BPH (if any) would be eliminated from Bangladesh.	500,000.00
8.3 Isolation and identification of	Identification of sex pheromone of rice stem borer.	Identify pheromone components which	1500,000.0 0

	sex pheromone of stem borer. Duration: Mid term	Development of pheromone based stem borer management in rice field. Reduction of chemical insecticide	are essential for the attraction of stem borer males and use them crop protection will be known.	
9.	Project: Integrated Pest Management	dependency. Reduction of chemical pesticide and safe food management.		
	9.1 Use of sex pheromone in corporation with other IPM tools to control leafroller and stem borer. Duration: Mid term	To test the efficacy of sex pheromone against leafroller and stem borer in rice field. To control rice leaf roller and YSB without insecticide.	Rice leafroller and yellow stem borer will be controlled in rice field by pheromone trap. Reduce insecticide use in rice field.	100,000.00
10.	Project: Vertebrate Pest Management	Management of rat in the rice field.		300,000.0
	10.1 Evaluation of available rodenticides against rice field rats. Duration: Mid term	To find out effective dose of rodenticide to control rat.	Field efficiency of rodenticide available in the market will be evaluated in rice field.	200,000.00
	10.2 Use of Watching Tower to manage rice rats Duration: Long term	Sustainable management of rat facilitating owl watch tower for predation	Sustainable management of rat facilitating owl for predation Owl feeding composition in rice ecosystem will be known	100,000.00
	10.3 Testing birth control medicine/botanical s to rice field rat Duration: Mid term	To reduce birth rate of rice field rats	Field population of rice rat will be reduced at tolerable / expected level.	200,000.00
		Plant Pathology Divisi	on	
		Proposed Research programme	e 2022-2023	

Sl. No.	Programme area/Project (Duration)	Major Objective	Expected Output	Annual Budget Thousand Tk.
		Program Area: Pest Manag	gement	
I.		Survey and monitoring of rice	e diseases	
	1.1 Survey and monitoring of rice diseases in selected areas	 To investigate the present status of different rice diseases in different climatic environments To update disease crop calendar 	Update status of different rice disease based on different climatic condition will be Identified	600
	1.2. Monitoring of rice diseases in HIZR and healthier rice under confined condition	To determine the incidence and severity of rice diseases on the genotypes	Disease level in different advanced genotypes of healthier rice will be identified	100
	1.3. Digitization of Surveillance System and Data Storage	To develop a web-based rice disease information platform in Bangladesh	Web based disease surveillance method will be developed	100
II.	Population structur	e and biology of major pathogens		I
	2.1. Improvement of differential system for rice blast disease in Bangladesh	 To select new differential blast isolates To identify candidate resistant gene(s) or source(s) To monitor regularly of the evolution of new races 	Emergence of rice blast pathogen will be observed	50
	2.2. Studies on host range of blast pathogen	To determine the pathogenicity of all the isolates to rice and the pathogenicity of rice isolates to foxtail millet and barely	Host specification of blast pathogen in different sources will be identified	800
	2.3. Identification of the source of infection of rice false smut disease	 1.To identify whether seeds are the carrier of the pathogen or not 2. To identify whether soil is the carrier of the pathogen or not 	Soil or seed source of false smut disease of rice will be defined	100
II.	2.4 Isolation of potential microbes for controlling	To identify potential fungi/bacterial for controlling major weeds of rice	Potential microbes will be identified to control weeds in rice	50

	major weeds of		ecosystem	
	rice	To conduct a details study on		
		bacterial panicle blight (BPB)	Causal effect,	200
	2.5. Etiology,	disease in Bangladesh	epidemiology and	
	Epidemiology and		biology of Bacterial	
	Management of		panicle blight	
	Bacterial Panicle		pathogen will be	
	Blight (BPB): An		determined	
	emerging and			
	climate sensitive			
	rice disease in			
	Bangladesh	To check the variability of rice		
		tungro virus of Bangladesh	Variation of tungro	100
	2.6. Determination		virus strain will	
	of variability of		measured	
	rice tungro virus			
	strain of			
	Bangladesh	To identify the new viruses by		
		based on phenotypic symptoms and	Emerging new races	100
	2.7. Identification	molecular markers	of viral diseases will	
	of emerging viral		be characterized	
	diseases and its			
	causal organisms in			
	Bangladesh			
		To isolate, purify and preserve the		
		Xanthomonas oryzae pv. oryzae	Permanent	50
	2.8. Development	obtained from infected rice leaves	preservation method	
	of Long-Term		for Bacterial leaf	
	Preservation		blight diseases	
	Technique of		pathogen will be	
	Xanthomonas		developed	
	oryzae pv. oryzae			
III.	Disease resistance a	nd molecular studies		
	3.1 Linkage and	To identify significant QTLs with	Blast resistant QTLs	100
	QTL mapping of	linked marker for blast resistance in	will be identified	
	blast resistance in	BR16	from BR16 rice	
	BR16		variety	
	3.2. Studies on the	1. To know the genetic mechanism	Blat disease resistant	200
	genetic mechanism	of rice blast resistance in BRRI	pathway in BRRI	200
	5 Senetie meenamoni	dhan33	dhan 33 will be	
	of rice blast			1
	of rice blast resistance in BRRI			
	resistance in BRRI	2. To identify marker data for	identify	

	3.3. Detection of novel loci	To detect the new sources/loci/genes of blast	new	200
	underlying rice blast resistance by integrating a genome-wide	sources/loci/genes of blast resistance from native germplasm	sources/loci/genes of blast resistance from native germplasm will be defined	
III.	association study 3.4. Phenotypic and genetic characterization of local aromatic germplasms against blast.	To characterize their resistance pattern for developing blast resistant aromatic pre breeding materials.	Characterization of local aromatic germplasms against blast will be observed	100
	3.5. Development of Rice Blast Resistance by CRISPR/Cas9- Targeted Mutagenesis of the OsERF922	To develop durable blast resistant variety or line against the major races by targeted mutagenesis (CRISPR/Cas9).	Durable blast resistant rice variety will be developed by following CRISPR/Cas9 approach	500
	3.6. Introgression of blast resistance gene(s) into BRRI dhan58 using marker assisted backcross breeding	To introgress blast resistant genes (both Pi9 and Pb1) in high yielding BRRI dhan58	Pi9 and Pb1 resistant gene will be introgressed in BRRI dhan58	400
	3.7. Development of durable broad spectrum BB and Blast resistant variety through mutagenesis by CRISPR/Cas9 system	To develop broad spectrum resistant rice variety against Bacterial Blight and Blast disease using CRISPR/Cas9 system	Durable broad spectrum BB and Blast resistant variety will be developed through CRISPR/Cas9	1000
	3.8. Development of blast resistant varieties using differential system and molecular markers	To develop blast resistant varieties for Bangladesh	Blast resistant advanced lines or variety will be developed	300
	3.9. Development	To develop blast and bacterial blight (BB) resistant Pre-breeding	Major disease	200

	of Multiple	materials in the background of	resistant advanced	
	diseases resistant	BRRI dhan28	lines will be	
	(blast and bacterial		developed	
	blight) pre-			
	breeding materials			
	through MAS			
	(Short duration)			
		To develop blast and bacterial		
	3.10. Development	blight (BB) resistant Pre-breeding	Blast and Bacterial	200
	of Multiple	materials in the background of	blight resistant pre	
	diseases resistant	BRRI dhan28	breeding materials	
	(blast and bacterial		will be developed	
	blight) pre-			
	breeding materials			
	through MAS			
	(Long duration)			
		To introgress bacterial blight (BB)		
	3.11. Gene	and blast resistant genes in the	Multiple gene	200
	pyramiding of	background of BRRI dhan49, BRRI	contained blast and	
	bacterial blight	dhan63 and BRRI dhan81	bacterial blight	
	resistance genes		resistanyt rice variety	
	into popular BRRI		will be developed	
	varieties		will be developed	
III.	3.12. Exploring	1. To find out new source of major	New germplasms will	1000
	new sources of	resistant gene(s) against blast	be identified and	
	resistance and	disease in the native land races	multiple resistant	
	pyramiding blast	2. To introgress of known resistant	gene contained	
	resistant gene into	genes and/or gene pyramiding to	variety will be	
	susceptible rice	develop durable blast resistant	developed	
	varieties (Short	variety		
	duration)			
		1. To find out new source of major		
	3.13. Exploring	resistant gene(s) against blast	New germplasms will	1000
	new sources of	disease in the native land races	be identified and	1000
	resistance and	2. To introgress of known resistant	multiple resistant	
	pyramiding blast	genes and/or gene pyramiding to	gene contained	
	resistant gene into	develop durable blast resistant	variety (Long	
	susceptible rice	variety	duration) will be	
1		variety	~	
	-		developed	
	varieties (Long		developed	
	-	To identify novel resistant gene of	developed	
	varieties (Long duration)	To identify novel resistant gene of	developed	
	varieties (Long duration) 3.14.	To identify novel resistant gene of bacterial and sheath blight disease		800
	varieties (Long duration) 3.14. Transcriptome		Novel bacterial blight	800
	varieties (Long duration) 3.14.			800

		1		
	bacterial blight and		detected through	
	sheath blight		transcriptome	
	resistant gene in		analysis.	
	Gunshee, landrace	To develop tungro resistant advanc		
		lines		
	3.15. Development		Tungro resistant	200
	of prebreeding		advanced line will be	
	materials for		developed	
	tungro resistance	1. To know different diseases status	1	
		of germplasm under natural		
	3.16.		Emerging disease	100
	Morphological and		resistant line will be	
	molecular		identified based on	
	characterization of		morphology and	
	upland rice	J 1	molecular analysis	
	germplasm against	markers	morecular analysis	
	major rice diseases	markers		
	major nee diseases	To evaluate the performance of		
		tungro resistant advanced lines		
	3.17. Screening	e l	Disease resistance of	500
	and observational		Tungro resistant	500
			materials will be	
	yield trial of tungro resistant materials		checked in net house	
	in green house and		and hot spot area.	
TTT	tungro hotspot area		T '	500
III.	3.18. Evaluation of	-	Tungro resistant	500
	tungro resistant	8	advanced materials	
	materials (INGER		will be identified	
	and advanced		from INGER	
	lines)		materials.	
		To identify the source of resistance		100
	3.19. Screening of		Blast resistant	100
	INGER materials		advanced materials	
	against blast		will be find out from	
	disease		INGER materials.	
		To screening advance genotypes or	N	1 - 0 0
			Bacterial blight and	1700
	3.20. Screening for		blast resistant	
	Bacterial Blight		materials will be	
	and Blast		identified from TRB	
	Resistance (TRB)		materials.	
		To identify the source of resistance		
		•	Sheath blight resistant	50
	3.21. Screening of		germplasms will be	
	germplasm against		find out.	
1	sheath blight	1.To investigate the Bakane		

	disease	resistant germplasms		
	3.22.Screening of rice germplasms against Bakanae disease	To find out promising BB resistant breeding lines	Bakanae resistant germplasms will be identified	50
	3.23. Screening of advance breeding lines and INGER materials against Bacterial Blight disease	breeding mies	Bacterial blight resistant lines will be detected from INGER materials.	50
IV.	Epidemiology, yield	l loss and grain quality studies		
	4.1. Development of Early Warning System of rice blast disease	To aware the rice growers at least 5 days earlier of blast disease infection	Early warning disease forecasting model will be developed for rice growers	300
	4.2. Development of inoculation technique for false smut disease	To develop artificial inoculation technique of rice false smut disease	Artificial inoculation technique will be developed for false smut disease	30
	4.3. Validation of the presence of the pathogen of rice false smut disease in seeds through molecular	To validate the previous findings	False disease source will be identified through molecular approach	50
	identification 4.4. Crop Loss Assessment of rice due to major diseases in Bangladesh	To calculate the actual crop loss due to major diseases in Bangladesh.	Crop loss due rice disease will be estimated	750
IV.	4.5. Development of a model for yield loss estimation due to sheath rot disease of rice	To develop a model applicable for yield loss estimation in farmers field due to sheath rot disease	Yield loss model for sheath rot disease will be developed	50
	4.7. Determination of afla toxins by	1.To determine the population of different storage fungi at different	Based on moisture content in storage afla	200

	storage fungi at different moisture level in storage condition	moisture level 2. To determine the production of aflatoxin by A. flavus	toxin level will be determine.	
	4.8. Detection of major bacterial pathogens of rice by multiplex PCR	To develop a multiplex PCR (mPCR) assay for rapid and simultaneous detection of major rice bacterial pathogen	Rapid identification of Xanthomonas spp in rice will be determine through multiplex PCR.	50
	4.9. Grain quality study of rice blast and false smut infected seed	Quality evaluation of rice grain as affected by blast and false smut disease	Quality of blast and false smut infected seed will be measured.	50
	4.10. Genotype and environmental interaction on neck blast incidence in blast prone area	To understand the pattern of neck blast incidence in relation to variety and environment	Major causal component of Neck blast disease will be determined	100
	4.11. Health status of rice seed in Bangladesh	To know the health conditions of rice seeds available from public and private sectors, and farmers' seed as well	Health status of different common seed sources will be determined	50
	4.12. Nano-diagnostic technique for detection of rice seed borne pathogens	To evaluate using nanoparticles in the extraction method of DNA from rice seeds compared with traditional detection	Extraction DNA from rice seed through nano particles approach will be developed	100
V.	Management of rice	e Diseases		I
	5.1. Sustainable Management of Blast, Sheath Blight and	1.To prepare effective nano- particles using organic and inorganic sources in Bangladesh.	Cost effective nano particles will be identified to control major rice diseases.	40000
	Bacterial Blight Diseases of Rice through Nano-	2.To find out the effective nano- particles to evaluate their efficacy		
	particles (NPs)	3.To reduce the recommended fungicides quantity for different disease management		

	of modified microwave assisted nano particles for rice blast disease management in Bangladesh	chemical for blast disease management	fungicides will be idenbtified	
	5.3. Chemical control of sheath rot and false smut disease of rice under different planting time	 To find out effective fungicide/s against Sheath rot and false smut disease. To identify most conducive time for sheath rot disease development 	Effective fungicides for sheath rot and false smut will be identified.	100
	5.4. Bakanae disease control with integrated approach	To find out the effective integrated approaches for bakanae disease management To find out the pesticide residue in	Integrated control measures will be identified for Bakanae disease	50
	5.5. Determination of residual effect of trifloxystrobin, tebuconazole and tricyclazole in rice grain under field conditions	pesticides sprayed rice	Residual effect of fungicides in rice grain will be determined	350
	5.6. Residual effect of Azoxystrobin and Difenocanazole on microbial community in phylloplane and phyllopphere of rice plant	 To determine the impact of chemicals on microbial colony To determine the residue of chemical in soil and plant 	Residual effect of fungicides in rice field soil will be determined	200
V.	5.7. Study on entomopathogenic fungi to control BPH, Leaf folder and stem borer	 To isolate the fungi from naturally infected insects To know the pathogenicity of entomogenous fungi against BPH Mass production of the entomogenous fungi and its use for BPH management 	Isolation and pathogenicity of hematophagous fungi for BPH, leaf folder and stem borer will be done	50
	5.8. Evaluation of	1. To find out effective fungicide/s	Effective fungicides	250

	new chemicals	against false smut	will be detected	
	against blast,	2. To identify most conducive time	against major disease	
	bacterial blight,	for false smut disease development.	of rice	
	sheath blight, false			
	smut, Sheath rot			
	and bakanae			
	diseases of rice			
VI.	Technology Transfe	er		1
	6.1. Training on	To build up farmer's awareness on	Farmers will be aware	1000
	integrated	integrated rice disease management	about epidemiology	
	management of		and yield loss of	
	rice diseases		major rice diseases	
		To build up farmers' awareness on	Farmers will learned	
	6.2. Dissemination	rice blast disease management and	integrated method to	100
	of Integrated Blast	minimize the yield loss	control blast disease	
	Management			
	Package at			
	Farmer's Field			
	L a	rm Machinery and Postharvest Tecl Workshop Machinery and Mainte		
		Proposed Research Programn	ne 2022-23	
Sl.	Programme area /		Expected output	Annual
no.	Project	Major Objective		budget
	(Duration)			Thousand
	Program	Inme Area: Farm Mechanization and	Postharvost Tachnolog	Tk.
		ogramme 01: Farm Machinery and		-
		1.0 Development of Agricultura	3.	
1.1			The performance of	50,000/-
1.1	Evaluating and	• To verify the quality of BRRI machines	the machine will be	50,000/-
	modifying of		improved	
	BRRI developed	• To identify the functional	mproved	
	machines	problems of farm machines		
	(1998 -Continued)	• To improve the performance of		
1.2	· · · · · · · · · · · · · · · · · · ·	farm machines	Head feed thresher	1.00.000/
1.2	Design and	• To design and develop a head feed thresher	Head feed thresher will be available and	1,00,000/-
	development of a head feed power	• To conduct a test of the thresher	straw will remain	
	thresher	for its performance and capacity	intact in threshing.	
	(2017 -Continued)	• To compare the performance with	intact in the sinning.	
		the existing threshers		
1.3	Design and	• To assess combine harvester field	The prototype of a	15,00,000/-
	development of	performance, general condition,	whole feed mini	

whole feed mini combine harvester (2017 -Continued)	 durability, repair and maintenance requirements To check the fuel consumption and hourly production of the combine harvester under different working conditions To obtain operator views regarding the suitability of combine harvester. 	combine harvester will be available for Bangladesh condition	
1.4: Development of a forward- motion manual rice transplanter (2019 -Continued)	 Design and fabrication of a manually operated forward-motion rice transplanter Performance evaluation of the developed rice transplanter 	 Forward motion type manually operated rice transplanter will be available for small- scale farmers' of Bangladesh. Transplanting cost and time will be reduced. Line-to-line and plant-to-plant distances will be maintained according to the farmers' demand. 	4,00000/-
1.5 Development, validation, and adoption of power weeder for wetland rice cultivation (2019 -Continued)	 To develop and multiplication of the power weeder To demonstration, validation and adaptation the weeder in different locations under different rice seasons To reduce the rice production cost 	 Field trials of the BRRI power weeder will create a positive impact on the usefulness of the technology. Appropriate technology will be available for weeding operations in line transplanted rice fields. Large-scale use of mechanical weeder will be increased. However, the difficulties for timely weeding will be reduced. 	
1.6 Design and	• To design and develop a power- operated rice transplanter	A walking type of power-operated rice	25,00000/-

	development of walking type power operated rice transplanter (2019 -Continued)	• To test the performance of the developed rice transplanter	transplanter will be introduced to the end- users	
1.7	Design and development of a diesel engine- operated high- speed hydro-tiller for marshy land (2021 -Continued)	 To design a variable power transmission mechanism of the diesel engine-operated hydro-tiller To design a rotary casing of a hydro tiller suitable for marshy land To develop a prototype based on engineering design To evaluate the prototype in different soil conditions 	Diesel engine- operated suitable hydro tiler will be developed for the end users to cultivate marshy land easily	3,00,000/-
1.8	Postharvestlossassessmentofwholeandheadfeedcombineharvesterunderdifferentsoilconditions(2021 -Continued)	 To assess the loss of grain. To identify a suitable operating system to minimize the loss. 	The maximum postharvest losses of the mechanical harvester in rice will be identified for providing information to reduce postharvest losses.	50,000/-
1.9	Determination of optimum seed rate for Hybrid rice variety for mechanical transplanting in Bangladesh (2021 -Continued)	 To identify the optimum seed rate for different hybrid rice varieties to produce quality seedlings and minimize the missing hills of mechanical transplanting. To identify suitable seedling adjustment options to dispense the optimum number of seedlings per stroke (seedlings hill⁻¹) of the rotary picker of rice transplanter. 	Optimum seed rate and suitable seedling adjustment options to dispense an optimum number of seedlings per stroke (seedlings hill ⁻¹) of the rotary picker of rice transplanter. will be known for different hybrid rice varieties to produce quality seedlings	50,000/-
1.10	Development of mat-type seedling using a hydroponic technique (2021 -Continued)	To develop a mat-type seedling using a hydroponic technique Performance test of developed seedling for rice transplanter	Using the Hydroponic technique to develop mat-type seedlings can save the topsoil of the field.	3,00,000/-
1.11	Identification and fabrication of fast-moving spare	• To list down the fast-moving spare parts of the different make and model	The use of combine harvesters is rising steadily in the	10,00,000/-

	parts of combine harvester and rice transplanter enhancing sustainable mechanization in Bangladesh (2022 -Continued)	 To identify the strength and quality of the major parts To take initiative for the fabrication of the parts 	moment, farmers are given access to the different makes and models of the combine harvester, but because spare parts frequently fail, their operation is frequently interrupted during the peak period of the season. This study will enable the development of commercially viable parts for domestic production identifying the fast- moving parts. Additionally, it would increase the number of local small business owners, lessen reliance on imports, and make combine harvester viable and sustainable.	
1.12	Ground pressure and bearing capacity of combine harvester in different soil conditions (2022 -Continued)	 To estimate ground pressure and bearing capacity of combine harvester in different soil conditions To estimate the required force in cutting, threshing, cleaning, bagging rice through combine harvester 	Traficability of a combine harvester can be determined	2,00,000/-
1.13	Design and development of self-propelled fertilizer deep placement applicator (2022 -Continued)	 To design, fabricate and develop a power-operated fertilizer deep placement applicator using an existing developed manual applicator. To compare with other fertilizer applicators. 	 Power-operated fertilizer applicator will be developed Manually fertilizer deep placement difficulties will be solved. Losses of fertilizer in different ways will be reduced. 	3,00,000/-

1.14	Modification of the power transmission system of the BRRI hydro-tiller (2022 -Continued)	 To detect the causes of frequent tearing of hydro tiller chain To modify the power transmission system for increasing the longevity of the hydro tiller 	 Farmers can save time and costs for fertilizer deep placement with a power-operated fertilizer applicator. The longevity of the hydro tiller will be increased. 	50,000/-
1.15	Design and development of a single-row wetland power weeder (2022 -Continued)	 To design, fabricate and develop a power-operated single-row weeder suitable for weeding both in a row-to-row and line-to-line of the lowland and upland fields (line and without line sowing). To evaluate its performance in the different multi-crop fields. To compare with other dry and wetland paddy weeders 	 Power-operated single-row paddy weeder, as well as a multi-crop weeder, will be developed Uprooting weeds from plant to plant will be done mechanically. Extra labor for uprooting weeds from line to line of paddy fields will be reduced. Farmers can save time and costs for weeding with power-operated machines. 	1,00,000/-
1.16	Design and development of a self-propelled multi-rows power weeder for both wet and dry land condition (2022 -Continued)	 To design and fabricate the self-propelled weeder To evaluate the weeding performance in different locations To improve the developed weeder based on evaluation To reduce the weeding cost in rice production 	 A suitable power weeder for line transplanted dry and wet land crops will be available at the farmers' level. Human drudgery in weeding will be reduced by introducing a high- capacity user- friendly power- operated feeder 	5,00,000/-

	2.0 Milling and Processing Technology				
2.1	Designanddevelopmentofsolar dryer(2019 -Continued)	 To design, fabricate and develop a solar dryer To compare with traditional sun drying of paddy 	A new solar dryer will be available for grain drying.	2,00,000/-	
2.2	Test, evaluation and modification of rubber roll de- husker for commercial use (2015 -Continued)	 To modify and development of a rubber roll de-husker To evaluate the performance of paddy de-husker 	The combination of de-husker and polisher will be an alternate milling system of auto rice milling.	3,00,000/-	
2.3	Drying and tempering effect on Kernel Strength and milling recovery of the parboiled and un-parboiled Paddy (2022 -Continued)	 To determine the kernel strength of paddy in terms of drying and tempering effect. To make a relation between kernel strength and milling recovery. 	Optimum moisture content for maximum milling yield and head rice recovery will be accomplished	6,00,000/-	
		3.0 Development of stores and stor	age technology		
3.1	Effect of ageing on milling performance of premium quality rice (2017 -Continued)	• To observe the milling performance of BRRI dhan50 at different aging	The appropriate milling age of BRRI dhan50 will decide	2,00,000/-	
3.2	Validation and adaptation of hermetic storage structure in the household level in Bangladesh (2020 -Continued)	• To compare the performance of traditional and hermetic storage technologies in rice storage	Appropriate rice seed storage techniques will be identified	100,000/-	
3.3	Effect of the different storage structures of milled rice in long-term storage (2021 -Continued)	 To find out the suitable storage structure To investigate the influence of moisture content on storage time To observe the prevalence of insect/ diseases infestation of storage time To determine the effect of length of storage time on the quality of milled rice 	Suitable storage structure and length of storage time on the quality of milled rice	1,00,000/-	
1		4.0 Renewable Energy Tech	nology		

4.1	Study the briquette production from rice by product (2019 -Continued)	 To prepare briquettes from rice straw and husk Characterization of different briquettes originated from agricultural residue To measure the calorific value of the briquettes 	Good-quality briquettes will be produced	1,00,000/-
4.2	Study on solarenergy utilizationforsmallagriculturalmachinery(2019 -Continued)	 To design a mechanism of solar energy utilization To evaluate the performance of the developed machine 	 Solar-operated power chopper will be developed. Operation costs will be reduced 	3,00,000/-
4.3	Design, development and performance evaluation of briquetting machine using rice husk with different rations of maize steam (2021 -Continued)	 To design and develop a briquetting machine using rice husk with different ratio of maize steam. To determine the physical and combustion properties of the final product. To evaluate the performance of the briquetting machine. 	A low-cost briquetting machine will be developed and alternative fuel will be introduced instead of wood.	2,00,000/-
	_		_	
5.1	Industrialandfarm-levelextension of BRRImachineryandPostharvesttechnology(1998 -Continued)	 To create awareness and demonstrate the benefit of using BRRI machines among the farmers To motivate the local entrepreneurs to manufacture BRRI-developed machinery 	The entrepreneur will be developed to use the machine on the rental system.	10,00,000/-
		6.0 Precision Agricultu	ire	
6.1	Detection of rice leaf diseases and early diagnosis using faster regional convolutional neural networks (R-CNN) (2022 -Continued)	• To develop and enhance an image processing system and deep learning techniques to advance the agricultural sector.	PA is a new advanced method in which farmers provide optimized inputs such as water and fertilizer to enhance productivity, quality, and yield.	1,00,000/-
6.2	Application of machine learning techniques in predicting	• Development of machine learning techniques in predicting standardized precipitation evapotranspiration index (SPEI)	The best agricultural drought-predicted model will be developed in the most	1,00,000/-

	agricultural drought: A regional examination of Bangladesh (2022 -Continued)		drought-prone area.	
		Agricultural Economics D	ivision	
		Proposed Research Programme	2022-2023	
Sl. No.	Programme area/Project (Duration)	Major Objective(s)	Expected Output	Annual Budget Thousand Tk.
		Program Area: Socio Economic	cs & Policy	
1	FarmLevelAdoptionandEvaluationofModernRiceCultivationinBangladeshStatus:Routinework	 ✓ To determine the region-wise adoption rate of different MVs in Aus, T. Aman and Boro seasons, ✓ To estimate the yield of different modern and local rice varieties in different seasons; ✓ To determine the socio-economic and varietal constraints of MVs in different regions. 	Region wise adoption rate of MVs and LVs in Aus, Aman and Boro seasons be determined. Socio- economic and varietal constraints will be elicited.	300
2	Prospect and Constraints to Adoption of BRRI Released Modern Rice Varieties in Bangladesh: A Case of Jashore District Status: New	 To identify the drivers and constraints of adoption of BRRI released varieties; To delineate the prospect of BRRI varieties for large scale dissemination at the farm level. 	Drivers and constraints of BRRI released varieties in Jashore will be determined.	200
3	Assessment of Popular Local Rice Varieties Cultivated in Different Seasons in Bangladesh Status: New	 ✓ To determine the adoption status of local varieties ✓ To analyze the comparative profitability of popular local and HYV rice; and ✓ To identify the reasons for cultivating these local cultivars. 	Adoption Status of LVs will be determined. Comparative profitability of popular LVs and HYV will be analyzed. Reasons for cultivating LVs will be identified.	150

Estimation of \checkmark To determine the costs and Profitability of MV	1
Costs and Return returns of MV Aus, T. Aman Aus, T. Aman and and Dava rise sultivities in Dava rise sultivities	
of MV Rice and Boro rice cultivation in Boro rice cultivation	
Cultivation at the Bangladesh, will be analyzed.	
Farm Level \checkmark To estimate the factor and Factor and income	
4 income share of MV rice share of MV rice	300
Status: Routine cultivation in different seasons; cultivation in	
work and different seasons will	
\checkmark To evaluate the changes in costs be estimated.	
and returns and inputs	
utilization pattern over the	
years.	
Adoption \checkmark To delineate adoption status andAdoption status and	
Determinants, yield of stress tolerant and yield of stress tolerant	
Profitability and hybrid rice varieties; and hybrid rice	
Resource Use \checkmark To estimate profitability and varieties will be	
Efficiency of resource use efficiency of stress illustrated.	
5 Stress Tolerant tolerant rice varieties; and, Profitability and	100
Rice in Selected \checkmark To identify factors influencing resource use	
Areasofadoptiondecisionofstressefficiencyofstress	
Bangladesh: An tolerant and hybrid rice tolerant rice varieties	
Econometric varieties. will be estimated.	
Approach	
Status: Continued	
Socio-economic \checkmark Assessing perception of the rice Perception of the rice	
Vulnerability of farm households about climate farm households	
ClimateChangechange and variability;about climate change	
and Adaptation 🗸 Identification of adaptation and variability will be	
Strategies of the strategies and barriers to assessed. Adaptation	
6 Rice Farm adaptation of the vulnerable strategies and barriers	1 1 1 1 1 1
Households in the households in the face of to adaptation of the	100
Coastal and Floodclimate change issues; and,vulnerable	
Prone Areas of \checkmark Assessment of livelihood households in the face	
Bangladesh vulnerability of households in of climate change	
Status: Continuedhazards-prone areas.issueswillbe	
identified.	
Producers' v To estimate the supply function Supply function of	
Welfare Loss in of rice; rice will be estimated.	
Bangladesh: An \checkmark To measure the producers' producers' surplus	
Assessment of surplus change in terms of (i) change in terms of (i)	
7 Rice Market procurement and real price, (ii) procurement and real	
Distortion farmers' expected and real price, (11) farmers'	
Status: Continued price; and, expected and real	
\checkmark To formulate policy guidelines price will be	
towards minimizing producers' measured.	
welfare for sustaining rice	

		production in Bangladesh.	
8	Comparative Profitability of Rice and its Competing Enterprise in Selected Areas of Bangladesh Status: New	 ✓ To assess the profitability of rice rice and selected non rice and selected non rice enterprises ✓ To find out the reasons for cultivating non rice enterprises ✓ To estimate optimum allocation of resources for rice and non-rice enterprise ✓ To explore the ways of ensuring profitability of rice production Profitability of rice production Profitability of rice 	100
9	Livelihood Status and Food Security Analysis of Garo Tribe in Bangladesh Status: New	 ✓ To analyze the socio- economic status of the Garo people will people; ✓ To study the rice consumption (calorie intake) level of the sample households ✓ To study the rice consumption (calorie intake) level of the sample households ✓ Sample households ✓ Sample households 	100
10	Understanding Climate Variability, Adaptation and Market Insights of Rice in <i>Haor</i> Ecosystems Status: Continued	 ✓ To dig out the perception of farmers about climate change ✓ To figure out farmers' coping and adaptation strategies to climate change ✓ To derive policy implication. ✓ Perception of farmers about climate change ✓ To figure out farmers' coping and adaptation strategies to climate change ✓ To derive policy implication. 	100
11	Adoption status of BRRI Developed Different Technologies (other than rice seed) in Bangladesh Status: New	 ✓ To know adoption status of BRRI developed different technologies in selected areas ✓ To identify the reasons of adoption and non-adoption of those technologies ✓ Reasons of adoption and non-adoption of those technologies 	150
12	AssessingtheEffect of Subsidyon MechanizationinRiceProductioninBangladeshStatus: New	 ✓ To assess the profitability of rice production under subsidized machinery; ✓ To draw some policy guidelines for effective mechanization in rice production. ✓ Profitability of rice production under subsidized machinery will be assessed. ✓ Policy guidelines for effective mechanization in rice production. 	200

		Proposed Research Programn	ne-2022-23	
SL No	Programme / Project (Duration)	Major Objective	Expected Output	Annual Budget Thousand Tk.
		Program Area: Socio Economic	s and Policy	
1	CV for estimating yield and yield contributing characters of BRRI varieties	 To determine the acceptable limit of CV for biometric characters of rice varieties To determine the relative contribution of phenotypic characters/yield contributing characters to rice yield To review the existing experimental data 	 To determine the acceptable limit of CV for biometric characters of rice varieties To determine the relative contribution of phenotypic characters/yield contributing characters to rice yield To review the existing experimental data 	3.00
	Validation of statistical method for adoption percent of BRRI varieties	1. Selection of proper statistical method for estimating adoption percent of BRRI varieties.	1. Selection of proper statistical method for estimating adoption percent of BRRI varieties.	3.00
2	DynamicsofMulti-traitstabilityindex(MTSI)foridentifyingthemoststablegenotypes of threericegrowingseasoninBangladesh	 To evaluate the stability of rice genotypes by multi-trait stability index (MSTI) analysis under different environmental conditions. To investigate the Dynamics of Multi-trait stability index (MTSI) for identifying stable genotypes 		3.00

3	Rice database and analysis system (RDAS)	 To develop a web based integrated framework on 'Rice Database and Analysis System (RDAS) To create map and graph based on rice data. 	 To develop a web based integrated framework on 'Rice Database and Analysis System (RDAS) To create map and graph based on rice data. 	3.00
4	Utilizing Medium- Range Weather Forecasts in Advisory Generation for Sustaining Rice Productivity in Bangladesh	 To understand the weather/climate induced risk in the local context. To validate the information type (climate and advisory generated) and timescale needed at the local level. To get an overview of how the advisory mechanism is currently working in the ground. Finding gaps/challenges and possible solutions. To identify capacity building needs at local level 	 To understand the weather/climate induced risk in the local context. To validate the information type (climate and advisory generated) and timescale needed at the local level. To get an overview of how the advisory mechanism is currently working in the ground. Finding gaps/challenges and possible solutions. To identify capacity building needs at local level 	5.00
5	Projected Climatic Factors (2050) Maps of Bangladesh (In collaboration with Irrigation and Water Management Division, Plant Physiology Division and all R/S)	 To construct projected climatic factors maps of Bangladesh for 2050 To determined projected climatic factors value district/division wise of Bangladesh for 2050. To deliver an idea about future climate to researchers and planners 	 To construct projected climatic factors maps of Bangladesh for 2050 To determined projected climatic factors value 	3.00

	SuitabilityMappingofVariousCroppingPattern(In collaborationwithRFS andIWM)	To construct suitability map of various cropping pattern	1. To construct suitability map of various cropping pattern.	3.00
	Groundwater zoning Map of Bangladesh (In collaboration with IWM and all R/S)	 To construct groundwater zoning map of Bangladesh. To find out favorable and critical zone of groundwater use area of Bangladesh 	 To construct groundwater zoning map of Bangladesh. To find out favorable and critical zone of groundwater use area of Bangladesh 	3.00
6	Training program on multivariate data analysis	 To train up BRRI scientists on multivariate data analysis using different statistical software. To give clear and straightforward guideline of how to conduct experimental design for MVA. To make BRRI scientists self- dependent on multivariate data analysis. To developed skills on research planning, program and report writing. 	 To train up BRRI scientists on multivariate data analysis using different statistical software. To give clear and straightforward guideline of how to conduct experimental design for MVA. To make BRRI scientists self- dependent on multivariate data analysis. To developed skills on research planning, program and report writing. 	3.00
7	Develop a web application to calculate the Stability Index for BRRI Stability Model	1. To develop a web application to calculate the stability index for BRRI stability model	1.To develop aweb application tocalculatestabilityindex forBRRIstabilitymodel.	3.00

8 Smart profiling of rice varieties in 0Bangladesh 1. To explore mechanism for profiling rice varieties with respect to environmental suitability, physical and physiological characteristics, yield potential and tolerance to abiotic and biotic stresses; 1. To electronically present and disseminate the newly developed smart profiled varieties information through a dynamic web application and biotic stresses; 2. To electronically present and disterace to abiotic and web app at server. 2. To manage, maintain and host mobile apt to stakeholders; 2. To manage, maintain and host mobile apt to stakeholders; 2. To electronically present and disterace to abiotic and biotic stresses; 8 New version of rice knowledge bank (RKB) mobile Apps 1. To develop the new version of RKB mobile apps. 1. To develop a push notification system. 3. To manage and maintain RKB Mobile apps 2. To develop a push notification system. 1. To develop a push notification system. 1. To develop a push notification system.	Develop a Platform for BBRI Developed Management Information System (MIS)	1. To develop a unique platform for BRRI developed MIS	1. To develop a unique platform for BRRI developed MIS	3.00
riceknowledge bank (RKB)RKB mobile apps.the new version of RKB mobile apps.bank mobile Apps2.To develop a push notification system.the new version of RKB mobile apps.3.To manage and maintain RKB Mobile appspush notification system.Joint ControlState RKBState RKBRKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State system.RKBRKB system.State 	Smart profiling of rice varieties in 0Bangladesh	 profiling rice varieties with respect to environmental suitability, physical and physiological characteristics, yield potential and tolerance to abiotic and biotic stresses; 2. To electronically present and disseminate the newly developed smart profiled varieties information through a dynamic web application and mobile app to stakeholders; 3. To manage, maintain and host 	 mechanism for profiling rice varieties with respect to environmental suitability, physical and physiological characteristics, yield potential and tolerance to abiotic and biotic stresses; 2 To electronically present and disseminate the newly developed smart profiled varieties information through a dynamic web application and mobile app to stakeholders; 3 To manage, maintain and host mobile and web 	38.00
and maintain RKB Mobile apps	rice knowledge bank (RKB)	RKB mobile apps.2. To develop a push notification system.3. To manage and maintain RKB	 the new version of RKB mobile apps. 2. To develop a push notification system. 3. To manage and maintain RKB 	11.20

Sl. No	Program area/Project (Duration)	Major Objectives	Expected output	Annual budget (Thousand Tk.)
		Program Area: Socio Economic	s and Policy	2
		3.1.Project : Rice production n	nanagement	
	Expt. 1. Artificial Plough Pan Development for Facilitating Modern Farm Machineries	 To increase soil resistance capacity To develop artificial plough pan in BRRI farm 	A method to develop plough pan in soil of BRRI for farm mechanization	1.00
	Expt.2.DeterminationofFertilizerManagementtoControlAlgaeInfestation in RiceField	 To determine fertilizers' effect on algal growth in rice field To identify fertilizer management to control algae in rice field 	A of fertilizer management method to control algae.	0.50
	Expt. 3. Suitable Chemical Control of Algae in Rice Field	To identify suitable algae control chemical for rice field.	A method to control algae at rice field.	0.50
	Expt. 4. Influence of different dates of transplanting on growth, yield performance and quality of fine rice varieties	To confirm best planting time of fine rice varieties for higher yield and quality.	Appropriate transplanting date and variety might be identified for growth, yield performance and quality.	0.50
		 To observe the grain quality of fine rice variety at different storage time and storage technologies. To identify the suitable storage technologies for preservation of rice seed. 	Appropriate storage time and storage technologies might be identified for rice variety.	0.50
	Expt. 6. Effect of Nitrogen Levels on Protein Quality of Rice at Different Regions	To find out the best nitrogen level for protein quality of rice at different regions.	Appropriate nitrogen dose for growth, yield and protein quality of rice at different regions.	4.50
	Expt. 7. Efficacy of Mechanical Seedling	1) To evaluate the efficacy of newly developed mechanical rice transplanter cum fertilizer	Suitable fertilizer dose might be identified for	1.00

Transplanter and	applicator.	mechanical rice	
Deep Placement of Mixed Fertilizer on Rice Yield	2) To observe the yield and yield contributing parameters.3) To analyze the cost of production.	transplanter cum fertilizer applicator.	
Expt. 8. Effect of Foliar Application of Silicon on Yield of Aromatic Rice	 To investigate the effect of foliar application of silicon's aqueous solution (sodium silicate) on yield of aromatic rice. To observe the disease and insect infestation. 	5	1.00
	3.2. Project: Labor Manageme	ent System	
Expt.1.AssessmentofHealthissuesoflaborersatBRRIfarm	 To examine the biological, psychological, and social health of labors in BRRI farm. To determine the factors that might affect the health of labors at BRRI. To suggest the policy recommendations for ensuring safety measures in terms of health hazards. 	status might be identified.	0.50
Expt. 2. Evaluation of Laborer's Efficiency according to Their Age at BRRI HQ, Gazipur	To identify age basis laborer's efficiency for better management of rice cultivation.	Labour information might be identified	0.50
Expt.3.Documentationoflaborers' wageforefficientmanagementmanagementandplanningforriceCultivation.	To find out the laborers' wage for rice cultivation throughout Bangladesh with food and without food.	The average wage rate throughout the year may be higher than previous years.	1.00
	3.3. Project: Rice Seed Pro	duction	
Expt.1. Performance of BRRI Varieties in Seed Production Plots at BRRI	To observe potential yield of BRRI varieties.	Actual yield of a variety in farm.	2.50
Farm.			

	Expt.1.aManagementandr	To efficient utilization of farm land and labor resources for smoothly unning of research activities and eed production at BRRI farm.	Better outcome from farm land and labor and smooth operations of farm implements.	13.0
	Expt.2.Managementandandand	Efficient utilization of resources for moothly running of research activities and other activities of BRRI.	Smooth management and attractive office premises.	8.5
		Adaptive Research Divi	sion	I
		Proposed Research Program:	2022-2023	
SI. No	Program area/Project	Major Objectives	Expected Output	Annual Budget (Thousand Tk.)
		Program Area: Technology Tra	nsfer	
01	Adaptive Research			
	Validation of Technologies	Validate the matured technologies at farm level		Project Total
	1. Varietal development			12000- 15000
	Advanced Lines Adaptive Research Trial (ALART) during T. Aus 2022, T. Aman 2022 and Boro, 2023	and adaptability of advanced breeding lines at farmers' field	recommended for proposed variety trial (PVT) from which few lines will be	
	1.1 ALART direct seeded conditions, deep areas (100- 150 cm water depth),	Do	Few lines suitable for deep water ecosystem may be recommended for PVT.	1000.00

Locations: Faridpur, Gopalganj, Manikganj, Habiganj, Manikganj, Sirajganj, BRRI Gazipur			
1.2ALARTDroughtTolerantRice(DTR)T.Aman 2022Locations:Chuadanga,Meherpur,Comilla,Rajshahi,Nagaon,Chapainawabganj,Rangpur,Bogura,Gazipur	Do	Few DTR lines may be recommended for PVT.	1000.00
1.3 ALART Premium Quality Rice (PQR)T. Aman 2022. Locations: Chuadanga, Meherpur, Comilla, Rajshahi, Nagaon, Chapainawabganj, Rangpur, Rangpur, Bogura, Gazipur	Do	Few PQR lines may be recommended for PVT.	1000.00
1.4ALARTSHR-1 (zirashailtype)T.Aman 2022.Locations:Kustia,Kustia,Jessore,Rajshahi,Nagaon,Natore,Dinajpur,Dinajpur,Rangpur,Bogura,Gazipur	Do	Few zirashail type lines may be recommended for PVT.	1000.00
1.5ALARTSHR-2 (Extra-long and long slender)Slender)T.Aman2022.Locations:Kustia, Jessore, Rajshahi,Natore,Dinajpur, Dinajpur, Rangpur,	Do	Few extra-long and long slender lines may be recommended for PVT.	1000.00

Bogura, Gazipur			
1.6 ALART for salt tolerant rice (STR), T. Aman 2022 Locations: Satkhira, Satkhira, Khulna, Feni, Noakhali, Bagerhat, Bagerhat, Barguna, Patuakhali, Gazipur	Do	Few STR lines may be recommended for PVT.	1000.00
1.7 ALART for Blast Resistant Rice (BRR) (Re-ALART), Boro 2022-23 Locations: Faridpur, Barishal, Rajshahi, Rangpur, Bagura, Cumilla, Habiganj, Satkhira, Kishoreganj, Gazipur	Do	Few BRR lines may be recommended for PVT.	2300.00
1.8 ALART for Short Duration Favorable Boro Rice (), Boro 2022-2023 Locations: Rangpur, Gopalganj, Faridpur, Barishal, Natore, Sirajganj, Cumilla, Feni, Kushtia, Habiganj, Manikganj, Gazipur	Do	Few FBR-SD lines may be recommended for PVT.	1000.00
1.9ALARTfor MediumBoro Rice (FBR-MD), Boro 2022-2023Locations:Rangpur, Gopalganj, Barishal, Sirajganj, Cumilla, Feni, Habiganj, Manikganj, Gazipur	Do	Few FBR-MD lines may be recommended for PVT.	1000.00

	1.10ALARTforSuperiorHighYieldingRice(SHR-1),Boro 2022-23Locations:Bogura,Kushtia,Jessore,Rajshahi,Habiganj,	Do	Few Superior High Yielding Rice lines may be recommended for PVT.	1000.00
	Cumilla,Rangpur,BRRI Gazipur1.11ALARTSuperiorHigh		Few Superior High Yielding Rice lines	1000.00
	Yielding Rice (SHR- 2), Boro 2022-23 Locations: Bogura, Kushtia, Jessore, Rajshahi, Habiganj, Cumilla, Rangpur, BRRI Gazipur	Do	may be recommended for PVT.	
	1.12 ALART for Favorable Boro Rice (FBR-Barishal), (Re- ALART), Boro 2022- 23 Locations: Rangpur, Gopalganj, Faridpur, Barishal, Natore, Sirajganj, Cumilla, Feni, Kushtia, Habiganj, Mymensingh, Gazipur	Do	Few FBR lines may be recommended for PVT.	1000.00
02	Dissemination of Technologies	Conducting on-farm trials for dissemination of BRRI technologies		Project Total
	2. Seed Production and Dissemination Program (SPDP)	To encourage the farmers for production, processing and storing of quality seed at on- farm level. To increase adoption of BRRI varieties. To get feedback information from the farmers and DAE personnel about BRRI varieties.		9000- 10000.00

2.1 SPDP in B. Aus 2022 under GoB	To disseminate BRRI dhan43, BRRI dhan83 varieties	About 4-ton seed will be produced from this program from which 0.5 tons will be retained for next year cultivation.	200.0
2.2 SPDP, T. Aus 2022 under GOB	B To disseminate BRRI dhan82, 98 & BRRI hybrid dhan7	About 20-ton seed will be produced from this program from which 5 tons will be retained for next year cultivation.	800.0
2.3 Dissemination Program of BRRI hybrid dhan7 during T. Aus 2022 under GOB	To disseminate BRRI technologies in the hilly region of Bangladesh.	About 25.0-ton seed will be produced from this program.	400.0
2.4 SPDP in <i>Jhum</i> of Hilly areas in Aus 2022	To disseminate BRRI dhan55, BRRI dhan82 and 85 in hills	About 4.0-ton seed will be produced from this program from which .6 tons will be retained for next year cultivation.	100.0
2.5 SPDP in Valley of Hilly areas in T. Aus 2022	To disseminate BRRI technologies in the hilly region of Bangladesh.	About 8.0-ton seed will be produced from this program from which 1.0 tons will be retained for next year cultivation.	150.0
2.6 SPDP T. Aman 2022 under GoB	To disseminate BRRI varieties in different region of Bangladesh.	About 100.0-ton seed will be produced from this program from which 10.0 tons will be retained for next year cultivation.	1800.0
2.7 SPDP in Valley of Hilly areas in T. Aman 2022	To disseminate BRRI technologies in the hilly region of Bangladesh.	About 8.0-ton seed will be produced from this program from which 2.0 tons will be retained for next year cultivation.	400.0

2.8 Dissemination of BRRI dhan71 & 75 in the northern districts in T. Aman-Potato- Boro cropping pattern During Aman 2022	To disseminate BRRI dhan71 & 75 in the northern districts in T. Aman-Potato-Boro cropping pattern	About 4.0-ton seed will be produced from this program from which 1.0 tons will be retained for next year cultivation.	300.0
2.9 A new model of SPDP in T. Aman 2022	To disseminate BRRI varieties and technologies in different region of Bangladesh.	About 2.0-ton seed will be produced from this program from which 1.0 tons will be retained for next year cultivation.	500.0
2.10 SPDP T. Aman 2022 under TRB	To disseminate BRRI varieties and technologies in different region of Bangladesh.	About 26.0-ton seed will be produced from this program from which 5.0 tons will be retained for next year cultivation.	400.0
2.11 HHAT Aman 2022 under TRB	To disseminate BRRI varieties through block demonstration in different region of Bangladesh.	Location specific suitable Aman varieties will be identified which will help rapid dissemination of modern varieties.	200.0
2.12 SPDP in Boro 2022-23 under GoB	To disseminate BRRI varieties through block demonstration in different region of Bangladesh.	About 200-ton seed will be produced from this program from which 35 tons will be retained for next year cultivation.	2500.0
2.13 SPDP with Polythene covered dry seedbed in Boro 2023	To disseminate with Polythene covered dry seedbed (SPDP- PCD) technology in the haors of Sylhet region	SPDP-PCD technology will help to reduce the growth duration upto 20 days in late transplanting areas which may be helpful to escape flash flood.	600.0
2.14 SPDP Boro 2022-23 under TRB	To disseminate BRRI varieties and technologies in different	About 40-ton seed will be produced from this program from	350.00

		region of Bangladesh.	which 5 tons will be retained for next year cultivation.	
	2.15 Head to Head Adaptive Trial distribution among the collaborators, Boro 2022-23	To disseminate BRRI varieties and technologies at farmers' level.	Location specific suitable Boro varieties will be identified which will help rapid dissemination of modern varieties.	800.00
03	Promotional activities	To update knowledge and skill of farmers and stalk holders on modern rice cultivation technology.	Farmers will be more interested as well as adopt BRRI technologies.	Project Total (Thousand tk.)
	3. Training/Field Days			5800.00- 6200.00
	3.1 Farmers' training in Aus 2022, T. Aman 2022& Boro2023 under GoB and TRB Total no: 120	To train the farmers on modern rice production technologies. To improve the farmers' knowledge and skill on rice production technologies. To create farmers' awareness about recent technologies.	About 3600 farmers and SAAOs will be trained up about modern rice production technologies.	3000.00
	3.2 Field Day in Aus 2022, T. Aman 2022 & Boro 2023 under GoB, TRB Total No. 100	To get feedback information directly from the farmers. For rapid dissemination of rice technologies among the farmers.	About 8000 farmers and extension personnel will gain knowledge about BRRI varieties which will help varietal dissemination throughout Bangladesh.	2800.00
04	Enrichment of own seed stock			
	4.1 Production of quality seeds of BRRI released recent varieties.	To produce quality seeds of BRRI varieties for adaptive research trials during Aman and Boro season.	About 7.0 tons of TLS seeds will be produced at BRRI farm which will be used in Seed Production and Dissemination	300.00

		Pr	rogram (SPDP).		
		Training Division		1	
	Proposed Research Program 2022-23				
		Program Area: Technology Tra	nsfer		
SI. No	Program area/Project	Major Objectives	Expected Output	Annual Budget (Thousand Tk.)	
1	TrainingNeedAssessmentPL:Dr.Md.ShahadatHossainPI:Dr.ShahnazParveen	To assess the need and expectations of the participants from the training.			
2	Capacity Building and Technology Transfer Through Training PL: Dr. Md. ShahadatHossain PI: Dr.ShahnazParveen	 To enrich the knowledge of the participants on rice production technologies. To disseminate BRRI developed technologies through extension personnel 			
	2.1 Rice production and communication training course for BRRI scientists.(2- months)PL:Dr.Md.ShahadatHossain PI:Dr.ShahnazParveen PI: MA Momin	 To acquire and enrich knowledge on: Modern rice production technologies Identification of field problems of rice cultivation and its solutions Research planning and execution. Data collection, analysis and interpretation Report/scientific article writing and presentation and Help extension personnel for quick dissemination of rice production technologies 		15 Lac	
	2.2 Training on modern rice production technologies (Yield	To train the extension agents so that they can: Able to use and disseminate modern rice production		25 Lac	

maximization).(one week) PL: Dr.Md.ShahadatHossa in PI: Dr.ShahnazParveen PI: MA Momin	 technologies and Identify and solve the field problems of rice cultivation and help the farmers to increase productivity. 	
2.3 Training course on project proposal writing(one week) PL: Dr.Md.ShahadatHossa in PI: Dr.ShahnazParveen	 Through this course the Participants will learn: Challenges/barriers of developing a proposal Steps of the different project proposals Methodology of developing a proposal Techniques of writing a proposal Documents need to be attached Proofing,revising and finalizing the document 	4.50 Lac
2.4 Advanced research data management and refresher training course on scientific report writing(one week) PL: Dr. Md.ShahadatHossain PI: Dr.ShahnazParveen	 The Participants will have developed their skills in: Organizing scientific paper Preparing each part of the paper to communicate scientific information effectively 	4.60 Lac
2.5 Training on Rice Pest Management(3 days) PL: Dr. Md.ShahadatHossain PI: Dr.ShahnazParveen	 To increase knowledge of pest (insects, diseases and weed) management in rice ecosystem. To identify the pest in the field and To increase ability to solve pest problems in rice field. 	4.50 Lac
2.6Training on management	This course will enable participants to:	3.00 Lac

		arietal Development Program (VDP)		Tk.
Sl. No.	Program area/ Project (Duration)	Major Objectives	Expected Output	Annual budget Thousand
		Proposed Research Program 2022	2-2023	
		Assess the resource speaker performances Regional Station, Cumilla		
3	Evaluation of imparted training program	 Evaluate the overall training program Assess the trainees performances 		
	2.8Special Training on specific issues related to rice production	• Objectives depend on the respective training courses.		
	on Modern Rice Production Technologies PL: Dr. Md.ShahadatHossain PI: Dr.ShahnazParveen	 Apply the modern techniques of rice production Identification of field problems of rice cultivation and its solution 		
	PI: Dr.ShahnazParveen 2.7 Farmers Training	 problems of rice cultivation and Collect data properly from the experimental plot. To trained the farmers so that they 		2.50 Lac
	technologies of rice and data collection procedure(one week) PL: Dr. Md.ShahadatHossain	 Learn and recognize the principles and techniques of modern rice production Identify and solve field 		

1.1.2	Confirmation of F ₁	To confirm the crosses as true hybrid	To confirm F ₁ crosses	
1.1.3	Growing of F ₂ population through FRGA	Advancement of segregating progenies	Advancement of segregating progenies	
1.1.4	FRGA nursery (F ₃ -F ₆)	Advancement of segregating progenies	Advancement of segregating progenies	
1.1.5	Observational Yield Trial-Cum (OYT- Cum)	Initial yield evaluation of advanced lines compared to standard checks	High yielding with desirable growth duration new breeding lines will be developed	
1.1.6	Preliminary Yield Trial-Cum (PYT- Cum)	Preliminary yield evaluation of advanced lines compared to standard checks	High yielding with desirable growth duration new breeding lines will be developed	
1.1.7	Maintenance breeding	Conservation of advanced lines and pre-breeding materials	To maintain the advanced breeding lines for further use	
		nt of Boro rice with high yield al		
	insect pests and premi	eptable grain quality and resistand um quality rice	ce to diseases and	
1.2.1	_		To make crosses among the expected breeding lines	
1.2.1	insect pests and premi Hybridization Confirmation of F ₁	um quality rice Introgression of genes from diverged genetic background into rice varieties/lines for the improvement of standard T. Aman	To make crosses among the expected breeding	
	insect pests and premi Hybridization	um quality riceIntrogression of genes from diverged genetic background into rice varieties/lines for the improvement of standard T. Aman varietiesTo confirm the crosses as true hybridAdvancement of segregating progenies	To make crosses among the expected breeding lines To confirm F ₁	
1.2.2	insect pests and premi Hybridization Confirmation of F ₁ Growing of F ₂ population through	Introgression of genes from diverged genetic background into rice varieties/lines for the improvement of standard T. Aman varieties To confirm the crosses as true hybrid Advancement of segregating	To make crosses among the expected breeding lines To confirm F ₁ crosses Advancement of segregating	
1.2.2	insect pests and premi Hybridization Confirmation of F ₁ Growing of F ₂ population through FRGA	um quality riceIntrogression of genes from diverged genetic background into rice varieties/lines for the improvement of standard T. Aman varietiesTo confirm the crosses as true hybridAdvancement of segregating progeniesAdvancement of segregating	To make crosses among the expected breeding lines To confirm F ₁ crosses Advancement of segregating progenies Advancement of segregating	

			broading lines	
			breeding lines will be developed	
1.2.7	Secondary Yield Trial#1-Cum (SYT#1- Cum)	Confirmation of yield evaluation in a replicated trial and selection of desirable lines compared with standard checks	High yielding with desirable growth duration new breeding lines will	
1.2.8	Secondary Yield Trial#2-Cum (SYT#2- Cum)	Confirmation of yield evaluation in a replicated trial and selection of desirable lines compared with standard checks	be developed High yielding with desirable growth duration new breeding lines will be developed	
1.2.9	Adavanced Yield Trial#1-Cum (AYT#1-Cum)	Initial yield evaluation and selection of desirable lines compared to standard checks	High yielding with desirable growth duration new breeding lines will be developed	
1.2.1 0	Adavanced Yield Trial#1-Cum (AYT#2-Cum)	Initial yield evaluation and selection of desirable lines compared to standard checks	High yielding with desirable growth duration new breeding lines will be developed	
1.2.1 1	Maintenance breeding	Conservation of advanced lines and pre-breeding materials	To maintain the advanced breeding lines for further use	
2	Program Area (02): Pe	est Management		
2.1	Survey and monitoring of major rice diseases in Cumilla district	 To know the prevalence of Major rice disease blast To assume the rice yield losses due to rice diseases 	Disease forecast model will be developed.	50 GOB
2.2	Demonstration of rice neck blast disease management technology under farmer's field condition	 To minimize yield loss due to blast disease To build up farmers awareness on blast disease management 	Farmer awareness about Blast disease management technology will be increased.	50 GOB
2.3	Varietal reaction and recovering ability of BRRI released rice varieties	To know the varietal reaction against tungro disease of rice	Tungro recovering ability rice variety will be identified.	50 GOB
2.4	Validation of Rice Tungro disease management technology from seedbed in Cumilla	To validate the management technology of rice tungro disease in Cumilla region	Farmer awareness about Tungro disease management technology will be	700 GOB

	region		increased.	
2.5	Tracking the infection source(s) of rice false smut disease	To identify whether the seed/soil and/ or the air is/are the carrier of the pathogen or not		50 GOB
2.6	Evaluation of new chemicals against Blast disease of rice	To find out the effective chemicals suitable for Blast disease of rice.	New fungicides will be registered for controlling blast disease	50 GOB
2.7	Evaluation of new chemicals against Sheath blight disease of rice	To find out the effective chemicals suitable for ShB disease of rice.	New fungicides will be registered for controlling sheath blight disease	50 GOB
2.8	Multi-Location Trial (MLT) of blast resistant advanced lines	To evaluate specific and general adaptability of the advance breeding lines as compared with checks	Blast disease resistant rice variety will be released.	100 GOB
2.9	Evaluation of tungro resistant advanced lines in hot spot areas in Cumilla region	To evaluate the tungro resistant advanced lines in natural farmers field condition.	Tungro disease resistant rice variety will be released.	100 GOB
2.10	Advisory services to the farmers	production;	Yield loss will be minimized.	50 GOB
3	Program Area: Crop-S	Soil-Water Management		
3.1	Effect of nursery management on the performance of rice variety grown under water stagnant condition. (New)	To find out optimum seed density To find out optimum age of rice seedling in waterlogged condition To identify proper seeding rate in water stagnant condition.	Stagnant tolerant rice will be developed.	60 GOB
3.2	Effect of seedling age and fertilizer management on growth and yield of rice variety.(New)	To find out optimum age of rice seedling to maximize yield. To optimize urea split application with varying seedling age	Appropriate seedling age and fertilizer package will be developed.	50 GOB
3.3	Effect of planting time on growth and yield of BRRI developed newly T. Aman and Boro varieties	To find out the appropriate time of planting for yield optimization	Appropriate planting time will be found out	50 GOB
3.4	EffectofKfertilizationatdifferentgrowth	To find out the effect of potassium fertilization at different growth stages of Rice	Suitable potassium fertilization time will be	50 GOB

	stages on growth and yield of rice		determined.	
3.5	Long-term missing element trials for diagnosing the limiting nutrient in soil in Cumilla	To determine nutrient deficiency problems in soil. To observe long- term yield trend of rice. To evaluate the changes in soil properties under long-term rice.	Limiting nutrient factor on rice yield in rainfed and irrigated ecosystem will be determined.	70 GOB
3.6	Effects of N rates on the yield of BRRI released news varieties in BRRI Cumilla	To update the N rates of BRRI released new varieties	Optimum N rate with maximum rice yield will be determined.	50 GOB
3.7	Effects of P rates on the yield of BRRI released new varieties in BRRI Cumilla	To update the P rates of BRRI released new varieties	Optimum P rate with maximum rice yield will be determined.	50 GOB
3.8	Effects of K rates on the yield of BRRI released new varieties in BRRI Cumilla	To update the N rates of BRRI released new varieties/ advanced lines in BRRI Farm Cumilla	Optimum K rate with maximum rice yield will be determined.	50 GOB
3.9	Determination of appropriate time of DAP application to control Algal growth	To find out the appropriate time of DAP application To control the algal growth in the rice field.	Algal control management will be determined.	50 GOB
3.10	Effect of DAP and urea rates on growth and yield of rice	To find out a suitable combination of DAP and Urea for desired rice yield	Suitable combination of DAP and Urea fertilizer will be determined.	50 GOB
4	Program Area: Socio I	Economic and Policy		
4.1	Stability analysis of BRRI released rice varieties	To demonstrate the suitability of BRRI varieties in Cumilla Region	Adaptation model of BRRI released rice varieties will be developed.	50 GOB/TRB
5	Program Area: Techno	ology Transfer		
5.1	Field demonstration of different BRRI released new rice varieties in Cumilla region	To demonstrate and disseminate BRRI varieties in greater Cumilla region	New high yielding rice varieties will be disseminated quickly and directly to the farmers.	2000 GOB/TRB/ PPNB
5.2	Farmer's and SAAOs training on modern	To increase farmers/ SAAOs/ Officers knowledge	Farmers and Officer's	2000 GOB/TRB/

5.3	rice cultivation and disease management technology (PPNB/GoB) Field day on modern rice cultivation (GoB	To increase farmers knowledge	knowledgeonmodernricecultivationandtechnologieswillbe enriched.Farmersknowledgeon	PPNB 500 GOB/TRB/
	& PPNB)		modernricecultivationandtechnologieswillbe enriched.	PPNB
		Regional Station, Habigan	i	
		Proposed Research Program 202	2-2023	
Sl. No.	Program area/ project with duration	Major objectives	Expected Output	Annual budget (Thousand Tk)
	1. Program area: Vari			
	Project I: Improvemen		1	
1	Regional Yield Trial	Intermediate tall deepwater rice genotypes suitable for shallow flooded deepwater areas will be selected.	2-3 superior lines will be identified	50.00
2	Advanced Yield Trial	On-farm verification of yield and other agronomic characters of advanced lines		100.00
3	Advanced Yield Trial	On-farm verification of yield and other agronomic characters of advanced lines		100.00
		Project II: Improvement of aerol	bic rice	
1	Growing F ₃ Population	F ₄ population will be selected for developing high yield potential T Aus lines	F ₄ lines suitable for T. Aus will be selected	100.00
2	Hybridization	Development of high yielding anti- oxidant enriched rice with aroma.	7-8 crosses will be done	100.00
	Pr	oject II: Improvement of Rainfed L	owland Rice	
1	Regional Yield Trial, SS &LS	On-station verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
2	AdvancedLineAdaptiveResearchTrial (ALART), PQR	On-farm verification of yield and other agronomic characters of advanced lines	_	50.00

	P	roject IV: Improvement of Irrigated	Rice (Boro)	
1	Regional Yield Trial, FBR	On-station verification of yield and other agronomic characters of advanced lines	will be identified	50.00
2	Regional Yield Trial, CTR	On-station verification of yield and other agronomic characters of advanced lines	-	50.00
3	Regional Yield Trial, ZER	On-station verification of yield and other agronomic characters of advanced lines		50.00
4	Regional Yield Trial, DRR	On-station verification of yield and other agronomic characters of advanced lines	-	50.00
5	Regional Yield Trial, Barisal	On-station verification of yield and other agronomic characters of advanced lines	-	50.00
6	Regional Yield Trial, STR	On-station verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
7	AdvancedLineAdaptiveResearchTrial (ALART), FBR-MD	On-farm verification of yield and other agronomic characters of advanced lines	-	50.00
8	Advanced Line Adaptive Research Trial (ALART), FBR- SD	On-farm verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
9	AdvancedLineAdaptiveResearchTrial(ALART),BRR BLB	On-farm verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
10	Advanced Line Adaptive Research Trial (ALART), BRR	On-farm verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
11	Advanced Line Adaptive Research Trial (ALART), SHR- 1	On-farm verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
12	Advanced Line Adaptive Research Trial (ALART), SHR- 2	On-farm verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00
13	Advanced Line Adaptive Research Trial (ALART), FBR- Barisal	On-farm verification of yield and other agronomic characters of advanced lines	2-3 superior lines will be identified	50.00

	2	. Program area: Crop-Soil-Water M	anagement	
1	Determination of optimum N and K fertilizer dose for newly released rice varieties in Haor area	To determine the optimum N & K doses for newly released rice varieties in Haor area To increase rice yield		100.00
2	Effect of time of planting on growth, yield and yield contributing factors of BRRI released varieties in Boro season at Haor region of Bangladesh.	To identify the suitable time of planting and variety for Haor area. To recommend appropriate high yielding variety for Haor area.	Suitable time of planting and variety for Haor area will be determined	50.00
3	Long-term missing element trial for diagnosing the limiting nutrient in soil.	To identify the yield limiting nutrient if any in the soils of BRRI Habiganj farm.	The yield limiting nutrient if any in the soils of BRRI Habiganj farm will be identified	70.00
4	Effect of irrigation suspension on mitigating greenhouse gas emission in irrigated rice cultivation	To assess the GHG and net carbon balance To assess the water productivity (WP) To EF and GHGI	GHG and net carbon balance and water productivity will be determined	200.00
5	Effect of greenhouse gas emission under light texture soil with different fertilizer management in Rangpur	To find of greenhouse gas emission -To find out of global warming potential To find out net emission and fixation	Greenhouse gas emission rate, global warming potential and net emission and fixation will be identified	200.00
6	Global warming potential under Jute-T. Aman-Boro cropping system at Kushtia region	To identify the CH ₄ , CO ₂ and N ₂ O emission To mitigate the global warming potential in rice soils under different fertilizer application To find out Net carbon balance	CH ₄ , CO ₂ and N ₂ O emission rate determined and mitigation strategies for the global warming potential in rice soils under different fertilizer application will be determined	200.00

7	Net carbon balance and carbon footprint as influenced by organic amendment under Wheat-T. Aman cropping system	To identify the CH ₄ , CO ₂ and N ₂ O emission To mitigate the global warming potential in rice soils To find out Net carbon balance To assess the carbon footprint To find out carbon input and output	CH4, CO ₂ and N ₂ O emission rate determined and mitigation strategies for the global warming potential in rice soils under different fertilizer application will be determined	200.00
8	Performance of grain yield & CH ₄ emission of newly rice varieties at Sylhet regions	To find out CH ₄ emission under newly Boro rice varieties.	CH ₄ emission under newly Boro rice varieties will be determined	100.00
9	Growth, Development and Yield of Rice in Response to Cold Temperature	To examine the effects of low temperature at panicle development stages.	The effects of low temperature at panicle development stages will be investigated	100.00
		3. Program area: Pest Manage	ment	
1	Integrated Management of Bakanae disease of	To manage Bakanae disease of rice through integrated management options	Bakanae disease of rice through integrated management	100.00
	rice		options will be identified	
2	Monitoring the insect pest, natural enemy and their incidence using light trap	To study the pest and their natural enemy incidence patterns in rice fields and to create a database.	-	100.00
2	Monitoring the insect pest, natural enemy and their incidence using light trap Survey of rice insect pests in Sylhet Region	enemy incidence patterns in rice fields and to create a database. To find the incidence pattern of major rice insect pests and natural enemies in Sylhet region.	identified Pest and their natural enemy incidence patterns in rice fields will be determined Incidence pattern of major rice insect pests and natural enemies in Sylhet region will be investigated	100.00
	Monitoring the insect pest, natural enemy and their incidence using light trap Survey of rice insect pests in Sylhet Region	enemy incidence patterns in rice fields and to create a database. To find the incidence pattern of major rice insect pests and natural	identified Pest and their natural enemy incidence patterns in rice fields will be determined Incidence pattern of major rice insect pests and natural enemies in Sylhet region will be investigated	

1.1	and Hybridization	genetic background	be collected and	20
01. 1.1	Development of Second Generation Rice (SGR) Germplasm collection	Development of high yielding (≥8 t/ Boro) rice varieties with improved mo is to develop short duration varietied drought/cold, resistance to major bio and acceptable grain quality. To introgress genes from diverse	odified plant type givies accompanied with	ng the thrust tolerance to
		Program Area: Varietal Develop	oment	
SI. No.	Programme area/project (Duration)	Major Objective(s)	Expected output	Amount budget (Thousand Tk.)
CT.		Proposed Research programme, 20		
		Regional Station Rangpur	· · · · · ·	
		the local farmers	released varieties will be produced	
4	Truthful level seed production (TLS)	To produce locally popular TLS seeds and to ensure quality seeds to	~ 20 tons of TLS seeds of newly	600.00
3	Breeder seed production	To produce quality Breeder seeds at BRRI farm Habiganj	~ 25 tons of breeders of different varieties will be produced	1000.00
2	Field days for Aus, T. Aman and Boro	modern rice cultivation techniques to the farmers	modern rice cultivation techniques	1000.00
2	Farmers' training and	To deliver the knowledge about the	be evaluated 300-400 farmers	300.00
	T.Aman and Boro varieties	farmers field	released Aus, T. Aman and Boro rice varieties will	
1	Demonstration of newly released Aus, T.Aman and Boro	To demonstrate the performance of newly BRRI released Aus, T. Aman and Boro rice varieties to the	of newly BRRI	200.00
		5. Programme area: Technology T		
			BRRI released rice varieties at BRRI Regional Station, Habiganj will be investigated	
	Varieties	BRRI released rice varieties at BRRI Regional Station, Habiganj.	adaptability and stability of the	

1.2	F1 Confirmation	To confirm as true F1s'	10 crosses will be confirmed	10
1.3	Observational Yield	Selection of homogeneous breeding	150 genotypes	30
	Trial (OYT)	lines	will be evaluated	
1.4	D 1' ' X7' 1 1		20	20
1.4	Preliminary Yield Trial (PYT)	Selection of best homogeneous breeding lines in replicated trail	20 genotypes will be evaluated	30
		breeding lines in replicated train	De evaluated	
1.5	Maintenance and seed	Maintain different germplasm for	Local and modern	20
	increase of	breeding purpose	rice variety as	
	parents/lines/land		germplasm will be	
2.0	races Preading for	Development of high violding (>-06	maintained	nd (>-08 for
2.0	Breeding for standard rice	Development of high yielding (>=06 Boro season) rice varieties giving		
	varieties for	duration varieties accompanied w		
	Rangpur region	resistance to major biotic stresses (in		
		grain quality.		• •
2.1	Germplasm collection	To introgress genes from diverse	8 germplasm will be collected and	20
	and Hybridization	genetic background	20 crosses will be	
			made	
2.2	F1 Confirmation	To confirm as true F1s'	15 crosses will be	10
			confirmed	
2.3	Field RGA	To advance segregating generation	10 F2-F5	30
			segregating generation will be	
			advanced	
2.4	Observational Yield	Selection of homogeneous breeding	50 genotypes will	30
	Trial (OYT)	lines	be evaluated	
2.5	Preliminary Yield	Selection of best homogeneous	15 genotypes will	30
2.6	Trial (PYT) Maintenance and seed	breeding lines in replicated trail	be evaluated Local and modern	20
2.0	increase of	Maintain different germplasm for breeding purpose	rice variety as	20
	parents/lines/land	breeding purpose	germplasm will be	
	races		maintained	
3.0	Development of	To develop multiple stress tolerant ric		
	Medium stagnation	flash flood submergence with high yi	eld potential (≥8 t/ha)) under stress
	and submergence Tolerant Rice	condition.		
	(MSSTR)			
3.1	Germplasm collection	Germplasm collection and	5 germplasm will	20
	and Hybridization	Hybridization	be collected and	
			20 crosses will be	
	E1 Carfornati	T C	made	10
3.2	F1 Confirmation	To confirm as true F1s'	5 crosses will be confirmed	10

3.3	Maintenance and seed increase of parents/lines/land races	Maintain different germplasm for breeding purpose	rice variety as germplasm will be maintained	20
4.0	BreedingforPhotoperiod-sensitivericevarieties(PSR)lowlandandCharland ecosystem	Development of Photoperiod-sensitiv varieties with yield potential (≥8 t/ha		te smart rice
4.1	Germplasm collection and Hybridization	To introgress photoperiod-sensitive responsible genes from diverse genetic background	5 germplasm will be collected and 10 crosses will be made	20
4.2	F1 Confirmation	To confirm as true F1s'	10 crosses will be confirmed	10
4.3	Maintenance and seed increase of parents/lines/land races	Maintain different germplasm for breeding purpose	Local and modern rice variety as germplasm will be maintained	20
5.0	Breeding for Basmati type rice varieties	Development of high yielding rice potential (≥ 6 t/ha)	varieties with yield	50
5.1	Germplasm collection and Hybridization	To introgress genes from diverse genetic background	5 germplasm will be collected and 10 crosses will be made	20
5.2	F1 Confirmation	To confirm as true F1s'	10 crosses will be confirmed	10
5.3	Field RGA	To advance segregating generation	5 F2-F5 segregating generation will be advanced	30
5.4	Observational Yield Trial (OYT)	Selection of homogeneous breeding lines	100 genotypes will be evaluated	30
5.5	Preliminary Yield Trial (PYT)	Selection of best homogeneous breeding lines in replicated trail	20 genotypes will be evaluated	30
5.6	Maintenance and seed increase of parents/lines/land races	Maintain different germplasm for breeding purpose	Local and modern rice variety as germplasm will be maintained	20
6.0	BreedingforAntioxidantRice(Black/ Red/ Purple)	To develop high yielding (≥6 t/ha fo rice varieties with improved plant typ		
6.1	Germplasm collection and maintenance breeding	Collection of local, cultivated and exotic germplasm for the utilization of variety development	05 germplasm will be collected and 05 will be	5

			characterized	
6.2	Hybridization	Introgression of genes from diverse genetic background	10 parents will be used for 10 crosses	10
6.3	F1 Confirmation	Confirmation of F ₁ as true hybrid	10 crosses will be grown	5
6.4	Observational Yield Trial (OYT)	Evaluation of promising breeding lines for their homogeneity, adaptability, phenotypic acceptability and high yield potentials	40 test entries along with three checks will be	20
6.5	Preliminary Yield Trial (PYT)	Preliminary yield evaluation of promising breeding lines for their homogeneity, adaptability, phenotypic acceptability and high yield potentials	along with three checks will be	20
7.0	Development of disease	e resistant hybrid rice parental lines b	y conventional way	
7.1	Source Nursery	To make a test crosses for identification of prospective disease resistant maintainers and restorers from diverse genetic origin	Approx. 50 elite lines with target genes and 5 CMS lines will be used for crossing program	50
7.2	Test cross Nursery	 i) Confirmation of maintainers and restorers from the crossed entries, ii) Selection of heterotic rice hybrids, iii) Conversion of prospective maintainers into new CMS lines 	Approx. 120 testcrosses (F1s) along with their parents and three standard hybrid check variety will be evaluated	50
8.0	Development of disease	resistant hybrid rice parental lines	oy molecular way	
8.1	Hybridization	Introgression of blast resistant genes into bacterial blight resistant restorer lines using MABC	<u> </u>	50
8.2	F ₁ Confirmation	i) To confirm F ₁ s as true hybrid ii)To initiation of backcrossing	FrueF1 swillbeconfirmedwithtargetresistantgenesbyMAS -Pi9	50
9.0	Developmentofsubmergencetoleranthybrid	 Identification of prospective subr restorers from diverse genetic origin. Selection of heterotic rice hybrids 		ntainers and

	parental lines	3. Conversion of prospective maintain	ners into new CMS lin	nes
9.1	Source Nursery	To make a test crosses for identification of prospective disease resistant maintainers and restorers from diverse genetic origin	Maximum number of crosses with diverse genetic origin will be initiated	20
9.2	Test cross Nursery	 i) Confirmation of maintainers and restorers from the crossed entries, ii) Selection of heterotic rice hybrids, iii) Conversion of prospective maintainers into new CMS lines Program area: crop-soil-water man 	Prospective maintainers, restorers and heterotic rice hybrids will be identified	20
1.1	Yield maximization of	To determine optimum planting	Yield	50
	BRRI dhan88, BRRI dhan89, BRRI dhan102 through adjustment at variable time of planting in Boro Season	time	maximization will be possible	
1.2	Evaluation of BRRI dhan87, BRRI dhan93 and BRRI dhan95 under different time of planting in rainfed lowland ecosystem	To assess the performance of selected rice varieties under double- transplanting method in rainfed lowland rice ecosystem	maximization will be possible	50
		Regional Station, Sirajgan j	i	
		Proposed Research Programme 20	22-2023	
Sl. No.	Programme area/Project (Duration)	Major objective	Expected output	Annual budget (Tk)
1	Effects of soil amendment practices on grain yield and yield components of modern variety at BRRI farm, Sirajganj	To improved soil physical properties that will improve soil water retention capacity of the root zoon.		50,000/-
2	Effect of Biochar on rice yield and soil health on problem soils.	To determine the effect of biochar on rice growth, yield and soil health of Char land area	Soil amendment practice for Char land area will be achieved	50,000/
3	Effect of transplanting date on the yield of newly developed	1 0	Optimum planting time for maximum	50,000/

	inbred rice varieties	maximum benefit.	out	
4	Response of latest BRRI varieties and management practices in Char land areas of Sirajganj	To determine the suitability of newly released BRRI varieties in char land areas. To disseminate BRRI recommended management practices in char land areas.	BRRI recommended management practice in char land area will be disseminated for higher yield	50,000/
5	Effect of seedling number on yield performance of Bangabandhu dhan100 in char land area at variable planting	To determine optimum number of seedling for higher yield To find out the optimum planting time	Optimum seedling number and planting time will be find out	50,000/
6.	Determination of optimum nitrogen level for maximizing the yield of T. Aman - Mustard - Boro cropping pattern in Bogura region	To find out the optimum nitrogen doses under Boro-T. Aus-T. Aman cropping pattern	Optimum nitrogen dose for T. Aman - Mustard - Boro cropping pattern will be achieved	50,000/
7.		To determine the optimum dose of nitrogen on maximum yield of BRRI dhan87	Optimum nitrogen dose will be find out for BRRI dhan87 in char land area	25,000/
8.			Optimum nitrogen dose will be find out for BRRI dhan100 in char land area	25,000/
		Regional Station, Kushtia	1	1
		Proposed Research Program 202	2-2023	
Sl. no.	Programme area/Project (Duration)	Major Objective	Expected Output	Annual budget (Thousand Tk.)
		Season: T. Aus 2022		

			20
1.1 Regional Yiel Trial Favorabl	e		30
Condition (Including		U	
,	2 condition	higher yielder than	
standard checks)		checks.	
1.2 ALART for	To evaluate the yield potential and	One or more	25
Premium Quality Rice	1 0	advanced breeding	
(PQR) (Including 2	farmers' field in different agro-	lines will be found	
entries against 2	ecological zones.	higher yielder than	
standard checks)		checks.	
1.3 ALART for Supe			25
High yielding Ric			
(SHR-1 Zirasha			
type)			
(Including 5 entrie against 2 standar			
checks)	u		
1.4 ALART for Supe	r		25
High yielding Ric			20
(SHR-1 Extra-long &			
long slender)			
(Including 5 entrie	s		
against 2 standar			
checks)			
1.5 ALART fo	r		25
Drought Tolerant Ric	e		
(DTR)			
(Including 2 entries			
against 2 standard			
checks)	1		
1.6 Regional Yiel		One or more	30
Trial Short Duratio		advanced breeding	
& Medium Duratio (SD/MD) (Including		lines will be found	
entries against	2	higher yielder than checks.	
standard checks)	2		
1.7 Regional Yiel	4		30
Trial Zirashail Typ			
(Including 3 entrie			
against 1 local checks			
1.8 Regional Yiel			30
Trial Diseas			
Resistant Rice (DRR	-		
BB) (Including	3		
8	3		
standard checks)			

	10 P			• *
	1.9 Regional Yield			30
ĺ	Trial Rainfed Lowland			
	Rice (RLR) (Including			
	4 entries against 4			
	standard checks)			
	1.10 Regional Yield			30
	Trial Zinc Enriched			
	Rice (ZER) (Including			
	4 entries against 2			
	standard checks)			
	1.11 Regional Yield			30
	Trial Swarna & Long			
	Slender Type (SLS)			
	(Including 5 entries			
	against 2 standard			
	checks)			
	1.12 Regional Yield			30
	Trial Short Slender			30
	Type (SS) (Including			
	3 entries against 1			
	standard checks)			
		Season: Boro 2022-23		
	1.13	Evaluation of agronomic	One or more	30
	Title: Identification	performance, specific and general	advanced breeding	
	and screening of	adaptability under on station	lines will be found	
	prospective aerobic	condition	higher yielder than	
	rice from local and		checks.	
			CHECKS.	
	BRRI developed rice		CHECKS.	
	BRRI developed rice		cheeks.	
	varieties, Boro, 2020-		checks.	
	varieties, Boro, 2020- 21 (Including 10		cheeks.	
	varieties, Boro, 2020- 21 (Including 10 entries against 3		checks.	
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks)			20
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR-			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.)			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard checks)			
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard checks) 1.15			30
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard checks)			
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard checks) 1.15			
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard checks) 1.15 Regional Yield Trial			
	varieties, Boro, 2020- 21 (Including 10 entries against 3 standard checks) 1.14 Regional Yield Trial Favorable Boro (FBR- Bio.) (Including 5 entries against 2 standard checks) 1.15 Regional Yield Trial Water Saving Rice			

1.16			20
	rio1		30
Regional Yield T			
Long Duration (FI			
LD) (Including	5		
entries against	3		
standard checks)			• •
1.17			30
Regional Yield T			
Short Duration (FI			
SD) (Including			
entries against	2		
standard checks)			
1.18			30
Regional Yield T	rial		
Medium Durat	ion		
(FBR-MD) (Includ	ing		
9 entries against			
standard checks)			
1.19			30
Regional Yield T	rial		
Extra Long Slen			
(FBR-ELS)			
(Including 6 ent	ies		
against 3 stand			
checks)			
1.20			30
Regional Yield T	rial		00
	ice		
(STR) (Including			
entries against			
standard checks)	5		
1.21			1 75 000
ALART for Favora	To evaluate the yield potential and	One or more	1,75,000
	adaptability at the advanced lines at	advanced breeding	
Boro Rice (FI	oK- farmers' field in different agro-	lines will be found	
Barishal) (Includin	g 4 ecological zones.	higher yielder than	
entries against	2 coordigious zones:	checks.	
standard checks)			
ALART for Medi			
Duration Boro R			
(FBR-MD) (Includ	-		
2 entries against	2		
standard checks)			
1.23			
ALART for Medi			
Duration Boro R	ice		

			1	1
	(FBR-SD) (Including			
	4 entries against 2			
	standard checks)			
	1.24			
	ALART for Super			
	High yielding Rice			
	(SHR-1) (Including 3			
	entries against 1			
	standard checks)			
	1.25			
	ALART for Super			
	High yielding Rice			
	(SHR-2) (Including 3			
	entries against 1			
	standard checks)			
	1.26			
	ALART for Blast			
	Resistant Rice (BBR)			
	(Including 4 entries			
	against 2 standard			
	checks)			
	1.27		One or more	
	ALART for Blast		advanced breeding	
	Resistant Rice (BBR)		lines will be found	
	(Re-ALART)		higher yielder than	
	(Including 4 entries		checks.	
	against 2 standard		UIUUKS.	
	checks)			
		Project II: Rice Farming Syste	ems	
2	2.1	i) To find out the best dose	5	30
	Yield response of rice	combination of Urea and MoP	well as farmers'	
	to different rates of		income will be	
	Nitrogen and Potash		increased.	
	fertilizer in Boro-			
	Fallow-T. Aman			
	cropping pattern in			
	Kushtia (continue).			
	2.2	i) To increase the whole systems		30
	Increasing the system	productivity through inclusion of		
	productivity of the	modern varieties and advanced		
	dominant cropping	• • •		
	pattern in Kushtia	ii) To increase farmer's income		
	region (Boro-Fallow-	through adding high value oil seed		
	T. Aman)	crops (mustard) in the existing		
		pattern		
L				

	 2.3 Increasing System Productivity Through inclusion of Rabi crops in Boro-Fallow- T. Aman Cropping Pattern in Kushtia Region (New) 2.4 Performance of different cropping patterns for year- round vegetable production under agro-forestry systems with exotic date palm (<i>Phoenix dactylifera</i>). 2.5 Evaluation of different rice-based cropping patterns under agro- forestry systems with avatia data palm 	To increase system productivity and farmer's income through inclusion of vegetable in the existing cropping pattern. i) To ensure year-round vegetable supply for farm family ii) To increase whole farm productivity i) To ensure food sufficiency for farm family ii) To increase whole farm productivity	30 30 30 30 30
	exotic date palm (<i>Phoenix dactylifera</i>).		
3		Project III: Socio Economic	
	3.1 Stability analysis of BRRI varieties, T. Aus, 2022 (Including 13 varieties)	To maintain season, year and location-wise data base on the yield performance of BRRI varieties.	15
	3.2Stability analysis ofBRRI varieties, T.Aman, 2022(Including 47varieties)		15
	3.3 Stability analysis of BRRI varieties, Boro, 2022-23 (Including 49 varieties)		15
	varieties)		
4		ect IV: Crop-Soil-Water Management	t

	Determining minimum irrigation water requirement of rice in different regions through water balance from on-farm demand and model simulation	ii)To measure rice yield response to on-farm demand based and simulated irrigation application		
	4.2 Determination of optimum time of planting and seedling age for yield maximization of BRRI dhan87 at Kushtia region	To find out optimum time of planting and seedling age for BRRI dhan87		30
5		Project V: Technology Transfer		
	5.1 Demonstrations of newly released BRRI varieties	To disseminate and popularize the varieties among the farmers in Kushtia	Farmers can choice new varieties.	6,00,000
		Regional Station, Bhanga, Fari	dpur	
		D	2 2022	
		Proposed Research Program 202	2-2023	
SL. No.	Program area/Project (Duration)	Major Objective	Expected output	Annual budget '000 Tk.
	area/Project (Duration) Program Area: Varieta		Expected output	budget
	area/Project (Duration) Program Area: Varieta management, Socio eco	Major Objective	Expected output arch, Crop-soil-water	budget

	(Hybridization)		will be developed	
3.	Breeding for developing Anoxia tolerant rice varieties	To develop high yielding anoxia and water stagnation tolerant rice genotypes for direct seeding condition to fit Onion/wheat- Jute- Relay T. Aman pattern	High yielding anoxia and water stagnation tolerant rice genotypes will be developed	75
4.	Confirmation of F ₁ s	To confirm the crosses as true hybrid	The crosses as true hybrid will be confirmed	50
5.	FRGA	Generation Advance	Generation will be advanced	50
6.	Collection of local rice landraces	To collect local rice landraces for breeding purpose and conserve in the Genebank of BRRI	Local rice landraces for breeding purpose will be collected	50
7.	Characterization of local rice landraces from Faridpur region	To maintain seed and characterize rice landraces as per 'Germplasm Descriptors and Evaluation Form' of GRSD, BRRI.	Seed and characterize rice landraces will be maintained	50
8.	Screeningandidentificationofanaerobic germination(AG)tolerancegermplasmofBangladesh.	To identify donor for anaerobic germination tolerance	Donor for anaerobic germination tolerance will be identified	100
9.	RYT: DWR	To evaluate specific and general adaptability of the genotypes at BRRI R/S Bhanga, Faridpur	DWR genotypes will be developed for Faridpur region	100
10.		 To evaluate the adaptation of BRRI released Rice varieties in different region of the country. To compare the modern rice variety with local variety. To select appropriate variety for specific region. To disseminate the modern varieties throughout the country. 	Adaptation of	TRB Funded
11.	Demonstration trial of BRRI developed HYVs and Hybrids varieties	To disseminate the modern HYVs and Hybrids varieties in Faridpur region	ModernHYVsandHybridsvarietiesinFaridpurregionwillbe	200
			disseminated	

	time on yield of rice in char land area of Faridpur region	productionatcharlandenvironment.2. Toadjustplantingtimeforsaving/protectAuscropflood.	saving/protect Aus crop from early flood will be adjusted	
13.	Development of weed control techniques in Boro-Fallow-Fallow cropping pattern	To develop cost effective and eco- friendly weed control practices for sustainable weed management in Boro-Fallow-Fallow cropping systems.	Cost effective and eco-friendly weed control practices in Boro-Fallow- Fallow cropping systems will be developed	100
14.	Introduction of intercropping system in different cropping pattern for medium high land area in Faridpur region (On- going)	To increase cropping intensity and productivity in Faridpur region	Cropping intensity and productivity in Faridpur region will be developed	200
15.	Rice farming components could be an option for biological weed control at transplanted <i>Boro</i> rice field in Faridpur region	 To reduce the weed infestation along with cost of labour To find out the effective way for controlling the aquatic weed in irrigated wetland rice field To increase the productivity and reduce the cost of production of rice in Faridpur region. 	Productivity and reduce the cost of production of rice in Faridpur region will be increased	200
16.	Mulching technique of zero tillage garlic production in Garlic- Jute-Fallow cropping pattern at Faridpur region	1. To reduce the weed infestation	Weed infestation along with requirement of irrigation will be reduced	150
17.	A survey on crops and cropping of char areas in Faridpur region	 To delineate socio economic profiles of the farmers, their land utilization pattern, existing cropping patterns, crops and crop production practices. To know about soil properties and organic matter content 	Socio economic profiles of the farmers, their land utilization pattern, existing cropping patterns, crops and crop production practices will be delineated	150
		Regional Station, Gopalgan		
		Proposed Research Programme 2	022-23	

SI. No.	Programme area/ Project	Major Objective	Expected output	Annual Budget Thousand Tk.
1.	Collection of local rice landraces	To collect local rice landraces for breeding purpose and conserve in the Genebank of BRRI	Collectedgermplasmwillsafelybeconservedanddocumentedalongwiththeircharacters	80.00
2.	Characterization of local rice landraces from Gopalganj region	To maintain seed and characterize rice landraces as per 'Germplasm Descriptors and Evaluation Form' of GRSD, BRRI.	Characterized rice landraces will be maintained and documented	50.00
3.	Preliminary yield trial of deep-water rice germplasm	To evaluate the yield performance of five deep water rice germplasm for comparing with standard check	The specific and general adaptability of the deep water rice germplasm as compared with standard checks was evaluated in on-station condition at Gopalganj Farm	30.00
4.	Secondary yield trial of Jhum rice genotypes	To evaluate the yield performance of two <i>Jhum</i> rice genotypes for comparing with standard check	The specific and general adaptability of the <i>Jhum</i> rice genotypes as compared with standard checks in on-station condition at Gopalganj Farm	25.00
5.	Regional Yield Trial (RYT)	Evaluation of agronomic performance, specific and general adaptability under on station condition	The regional yield trial was conducted to select the best performing advanced breeding lines with higher grain yield over the existing HYVs across multiple	120.00

			experimental sites.	
6.	Advanced Line Adaptive Research Trial (ALART)	To evaluate the yield potential and adaptability of the advanced rice genotypes at farmers' field in different agro-ecological zones	Evaluated best entry for proposed variety trial	200.00
7.	Collection and chemical analysis of peat soil	To analysis the soil nutrients To evaluate rapid peat sampling methods	Peat soil nutrients will be characterized	100.00
8.	Breeder seed production	To produce breeder seed of BRRI developed rice varieties	Increase quality seed production and distribution among farmers and BADC	140.00
9.	Hybridseedproduction(BRRIhybrid dhan5)	To produce F1 seed of BRRI hybrid dhan5	Increase F ₁ seed production and distribution among farmers	120.00
10.	Truthfully Label Seed (TLS) Production	To produce TLS seed of BRRI developed rice varieties as per indent of local demand	Increase quality seed production and distribution among farmers	80.00
11.	Head to Head Trial: VRS (Variety Replacement Strategy)	 To evaluate the adaptation of BRRI released Rice varieties in different region of the country. To compare the modern rice variety with local variety. To select appropriate variety for specific region. To disseminate the modern varieties throughout the country. 	Adaptation of BRRI released Rice varieties in different region of the country will be selected for specific region	TRB funded
12.	Demonstration of newly released T. Aus , T. Aman and Boro varieties	To disseminate and popularize the newly released rice varieties in the Gopalgang, Narail and Bagerhat District	ModernHYVsandHybridsvarietiesinFaridpurandKhulna region willbe disseminated	800.00
13.	Intensification of Boro-Fallow-Fallow cropping pattern through of floating vegetable in deep water ecosystem of Gopalganj	i.To identify the suitable BRRI varieties of low land area of Gopalganj ii. To increase the cropping intensity	Productivity and reduce the cost of production of rice in Faridpur region (Gopalganj) will be increased	60.00
14.	Collection and chemical analysis of	i. To analysis the soil nutrients ii.To evaluate rapid peat sampling		100.00

	peat soil	methods		
		Regional Station, Sagardi, Bar	risal	
		Proposed Research Program 20	22-23	
SI. No.	Program area/Project with duration	Major Objectives	Expected output	Annual Budget Thousand Tk.
		Program area: varietal develop	ment	
1	Development of tidal submergence tolerance rice (On going)	To develop high yielding rice varieties adaptive to tidal ecosystem	HYV with tidal submergence (T. Aman) rice will be developed.	300
2	Characterization and Genotyping (SNP) of local landraces adapted to tidal submergence ecosystem (On going)	To find out the suitable genotypes for developing parental materials with tidal submergence potential	Suitable genotypes as parental materials with tidal submergence will be identified	800
3	Development of Photosensitive Varieties having submergence tolerant gene for non-saline tidal ecosystem of Barishal region (New)	To develop tall photosensitive rice variety for tidal ecosystem	Tall photosensitive HYV for tidal ecosystem will be developed	250
4	Advance Line Adaptive Research Trial (ALART) of submergence tolerance long duration rice (SubTR-LD) (New)	To select suitable advanced rice line adaptive to tidal submergence ecosystem	Suitable advanced line adaptive to tidal submergence will be further advanced for varietal development.	400
		Program area: pest managem	ent	
1	Pest monitoring in BRRI Barishal farm (On going)	To know the existing and new pest species.	New pest species of Barishal region will be identified.	100
2	Insect pests and natural enemy incidence in light trap (On going)	To quantify the population of insects and natural enemies.	Insects and natural enemy population of Barishal region will be quantified.	100
3	Survey of rice insect pests in Barishal region (On going)	To find the incidence patterns of major insects and natural enemies.		200

			Barishal region will be delineated.	
4	Sweeping performance of Rectangular Hand Net in Seedbed (New)	To find out the insect pest attacking time and proper sweeping time in seedbed	Insect infestation and proper sweeping time in seedbed will be determined	100
5	Evaluation of biopesticides for management of Leaf folder and stem borer in field condition (New)	To find out efficacy of formulated biopesticides to control leaf folder and stem borer	Efficacy of formulated biopesticides to control leaf folder and stem borer will be determined	300
6	Bioaccumulation and detoxification of As (III) and disease management by <i>Achromobacter</i> <i>xylosoxidans</i> and increase rice yield in As-contaminated soil	To decrease As uptake and increase rice yield by spraying <i>A.</i> <i>xylosoxidans.</i>	Rice yield will be increased in As- contaminated soil by reducing As- contamination	400
7	Effect of plant extract mediated silver nano particle on bakanae diaese management (New)	To determine the effect of nano particle on bakanae disease management	Bakanae diaese of rice will be controlled by nano-technology	500
		Program area: crop-soil-water man	agement	
1	Standardization of nitrogen application method for modern rice variety under tidal ecosystem (New)	To find out the suitable method of N-application in tidal condition	ProperNapplicationmethod for rice intidalconditionwillbedetermined.	100
2	Determination of nitrogen requirement for modern rice variety in tidal ecosystem (New)	To find out the optimum nitrogen dose for modern variety of rice in tidal ecosystem	Increased nitrogen use efficiency and economic N rate of HYV rice will be achieved.	100
3	Contribution of tidal water irrigation on the nutrition and yield of modern rice (new)	To determine the variation in the effect of tidal and ground water irrigation on the response of modern rice to nutrient application	Contribution of tidal water to the nutrition and yield of modern rice will be determined.	100
4	Exploring sediment deposition from tidal	To find out the silt deposition rate and	Quality of tidal water sediment	100

	water in Barishal	to quantify organic and inorganic	with respect to	
	regional station (On	nutritients in deposited silt.	rice nutrition will	
	going)	-	be determined.	
		Program area: technology tran	sfer	
1	Establishment of	To test feasibility of the considered	BRRI developed	200
	Techno-Village in	technologies in Barishal region	technologies for	
	Barishal Region	6 6	modern rice	
	(New).		cultivation will be	
			evaluated in field	
			level.	
2	Field demonstration,	Dissemination of BRRI developed	BRRI's	3000
2	Farmers' training,	technologies.	technologies will	5000
	Field day	teennologies.	be disseminated.	
	Field day		Farmers will be	
			trained up with	
			BRRI developed	
			modern rice	
			production	
		Deciencel Station Softkhing	technologies.	
		Regional Station, Satkhira		
		Proposed Research Program 20	22-23	
Sl.	Program	Major Objectives	Expected output	Annual
No.	area/Project with			Budget
	duration			Thousand
				Tk.
		New Program		
1	Hybridization	8	Insect and salt	
1	Hybridization	New Program To develop breeding lines with high yield potential along with desirable	Insect and salt tolerance rice	Tk.
1	Hybridization	To develop breeding lines with high yield potential along with desirable		Tk.
1	Hybridization	To develop breeding lines with high	tolerance rice	Tk.
1	Hybridization	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain	tolerance rice	Tk.
1	Hybridization Effects of bio-organic	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests	tolerance rice	Tk.
	-	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance	tolerance rice variety	Tk.
	Effects of bio-organic	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio-	tolerance rice variety Yield	Tk.
	Effects of bio-organic fertilizer on rice yield	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield.	tolerance rice variety Yield	Tk.
	Effects of bio-organic fertilizer on rice yield in Boro season in the	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio-	tolerance rice variety Yield	Tk.
	Effects of bio-organic fertilizer on rice yield in Boro season in the south-western costal	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio- organic fertilizer on saline soil	tolerance rice variety Yield	Tk.
2	Effects of bio-organic fertilizer on rice yield in Boro season in the south-western costal ecosystem	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio- organic fertilizer on saline soil properties	tolerance rice variety Yield improvement	Tk. 200.0 100.0
2	Effects of bio-organic fertilizer on rice yield in Boro season in the south-western costal ecosystem Introducing B. Aus	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio- organic fertilizer on saline soil properties To find out the scope of utilizing fallow land after watermelon	tolerance rice variety ''''''''''''''''''''''''''''''''''''	Tk. 200.0 100.0
2	Effects of bio-organic fertilizer on rice yield in Boro season in the south-western costal ecosystem Introducing B. Aus rice in the	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio- organic fertilizer on saline soil properties To find out the scope of utilizing	tolerance rice variety ''''''''''''''''''''''''''''''''''''	Tk. 200.0 100.0
2	Effects of bio-organic fertilizer on rice yield in Boro season in the south-western costal ecosystem Introducing B. Aus rice in the Watermelon-Fallow-	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio- organic fertilizer on saline soil properties To find out the scope of utilizing fallow land after watermelon cultivation by cultivating B. Aus	tolerance rice variety ''''''''''''''''''''''''''''''''''''	Tk. 200.0 100.0
2	Effects of bio-organic fertilizer on rice yield in Boro season in the south-western costal ecosystem Introducing B. Aus rice in the Watermelon-Fallow- T. Aman pattern	To develop breeding lines with high yield potential along with desirable growth duration, acceptable grain quality and resistance to insect pests and salt tolerance 1. To evaluate the impact of bio- organic fertilizer on rice yield. 2. To determine the effect of bio- organic fertilizer on saline soil properties To find out the scope of utilizing fallow land after watermelon cultivation by cultivating B. Aus rice under rainfed condition	tolerance rice variety ''''''''''''''''''''''''''''''''''''	Tk. 200.0 100.0

	(RYT)	adaptability of the advance breeding lines with respective check-in on- station condition		
5	Multi-location Trial of blast resistance breeding lines (MLT- Blast)	To know the resistance of the lines against rice blast disease	Identification of blast resistance line	KGF
6	Confined Field Trial (CFT) for High Zinc and Iron (CFT-HIZR)	To evaluate phenotypic characteristics and agronomic performance under field conditions of advanced breeding lines containing high iron and zinc rice events (IRS1030-031, IRS1030-039 and IRS1027-059)	Development of high zinc and iron enriched rice	Project
7	Advanced Line Adaptive Research Trial (ALART)	 To evaluate the yield potential and adaptability of the advanced rice genotypes at farmers' field To get feedback information about the advantages and disadvantages of the selected materials from farmers and Extension personnel To select suitable material(s) for Proposed Variety Trial (PVT) 	Variety release as per objectives	200.0
	Progra	am Area: Crop-soil-water manageme	ent	
8	Effects of fertilizer and varietal management on greenhouse gas emissions in the South-Western costal ecosystem	To quantify green house gas emission in the rice field under saline ecosystem.	Estimation of green house gas emission in rice field	Project
	Pr	ogram Area: Socio-economic policy		
9	Stability Analysis of BRRI Varieties at Satkhira	To find out the suitability and adaptability of the particular variety	Identification of stable rice variety in this region.	200.0
10	Rice Area Production Mapping (RAPM)	Mapping of rice cultivation area according to season	Estimation rice cover area	150.0
11	Estimation of rice yield in different seasons of Bangladesh: Crop cuts method	 To find out the on-farm yield of BRRI released rice varieties in Satkhira and Jashore regions To analyse the performance of BRRI released rice varieties with other varieties 	Estimation of rice yield scenario.	150.0

	P	rogram Area: Technology transfer		
12	Cost-effective hybrid rice production by optimizing seedling age and number	 To find out the appropriate seedling age and number for transplanting of hybrid rice for optimum yield Adjustment of seed rate for hybrid rice production from seed germination 	Standardization of seedling age for low seedling mortality.	200.0
13	Raising Boro seedling for energy-efficient land use	 Identification of healthy seedling raising technique of rice during cool temperature Reduction of field duration of Boro rice cultivation by early transplanting 	Understanding rice seedling raising protocol during cold period.	100.0
14	Assessment of specific and general adaptability for selection of suitable hybrid rice genotypes under saline prone areas for Boro season	To find out hybrid rice genotypes suitable for saline prone areas for Boro Season	Selection of saline tolerant hybrid rice line.	Project
15	Head-to-head adaptive trial (HHAT) of Modern Rice Varieties	 To find out the adaptability of BRRI released rice varieties in various regions of Bangladesh To compare modern rice varieties with popular local varieties Selection of rice variety/varieties suitable for a particular region To analyse farmers' response to modern rice varieties and take necessary actions accordingly 	Selection of adaptable high yielding varieties among the elite varieties.	TRB Project
16	Seed production and dissemination program (SPDP)	To disseminate BRRI varieties rapidly among the farmers of Khulna and Satkhira region	Quality seed supply to the farmers.	200.0
		ogram Area: Rice farming systems		
17	Development of four- cropped cropping pattern under irrigated ecosystem	 To increase the total productivity of unit area per year by increasing cropping intensity To compare the sustainability of four cropped cropping patterns in terms of soil health and economic profit. 	Increase of total production under rice-based cropping pattern in a year.	100.0
	_	am Area: Transforming rice breeding	ng	
18	Line Stage Trial (LST)	To assess FRGA/RGA derived advanced breeding lines for	Identification of promising rice	TRB and IRRI

		uniformity at heading and desirable	lines.	Project
		agronomic and grain type traits		
19	Observational Yield	Identification of genetically fixed		
	Trial (OYT)	advanced lines suitable for saline		
		areas		
20	Preliminary Yield	Initial evaluation of breeding lines		
	Trial (PYT)	for yield and other agronomic		
		characteristics in replicated trial		
21	Advanced Yield Trial	Confirmatory evaluation of selected		
-1	(AYT)	genotypes for yield and other		
		agronomic characteristics		
		agronomic characteristics		
22	Regional Yield Trial	To evaluate specific and general		
	(RYT)	adaptability of the advance breeding		
		1 7 0		
		lines with respective check-in on-		
22	Lutamatian 1 D' C'1	station condition		
23	International Rice Soil			
	Stress Tolerant			
	Nursery (IRSSTN)			
24	Asian Food and	Initial evaluation of yield, salt		
	Agriculture	tolerance and other agronomic		
	Cooperation Initiative	characteristics of selected materials		
	(AFACI) program	in replicated trial.		
25	AGGRi Network trial	To select the superior breeding lines		
		in salinity stress environment of		
		Bangladesh		
		Regional Station, Sonagazi, F	eni	
		Research Activities during 2022	-2023	
Sl.	Programme area/	Major Objective	Expected output	Annual
No.	I i ogi annine ai ca/		Expected output	Annuai
	0		Expected output	
	Project (Duration)		Expected output	budget Thousand
	0		Expected output	budget
	0	Season: Aus 2022		budget Thousand
	Project (Duration)	Season: Aus 2022		budget Thousand
1	Project (Duration) Stability Analysis of	Season: Aus 2022 ➤ To investigate the stability of	Stability data of	budget Thousand
	Project (Duration) Stability Analysis of BRRI developed rice	Season: Aus 2022 ➤ To investigate the stability of BRRI developed Aus rice	Stability data of the BRRI	budget Thousanc
	Project (Duration) Stability Analysis of	Season: Aus 2022 To investigate the stability of BRRI developed Aus rice varieties	Stability data of the BRRI developed Aus	budget Thousand
	Project (Duration) Stability Analysis of BRRI developed rice	 Season: Aus 2022 ➤ To investigate the stability of BRRI developed Aus rice varieties ➤ To find out location specific 	Stability data of the BRRI developed Aus rice varieties in	budget Thousand
	Project (Duration) Stability Analysis of BRRI developed rice	Season: Aus 2022 To investigate the stability of BRRI developed Aus rice varieties	Stability data of the BRRI developed Aus rice varieties in coastal region of	budget Thousand
	Project (Duration) Stability Analysis of BRRI developed rice	 Season: Aus 2022 ➤ To investigate the stability of BRRI developed Aus rice varieties ➤ To find out location specific 	Stability data of the BRRI developed Aus rice varieties in	budget Thousanc
1	Project (Duration) Stability Analysis of BRRI developed rice varieties in Aus 2022	 Season: Aus 2022 ➢ To investigate the stability of BRRI developed Aus rice varieties ➢ To find out location specific suitable variety(s) 	Stability data of the BRRI developed Aus rice varieties in coastal region of Bangladesh	budget Thousanc
	Project (Duration) Stability Analysis of BRRI developed rice varieties in Aus 2022 RYT-1 Favorable	 Season: Aus 2022 ➤ To investigate the stability of BRRI developed Aus rice varieties ➤ To find out location specific suitable variety(s) ➤ To evaluate specific and general 	Stability data of the BRRI developed Aus rice varieties in coastal region of Bangladesh To get suitable	budget Thousand
1	Project (Duration) Stability Analysis of BRRI developed rice varieties in Aus 2022	 Season: Aus 2022 To investigate the stability of BRRI developed Aus rice varieties To find out location specific suitable variety(s) To evaluate specific and general adaptability of the advance 	Stability data of the BRRI developed Aus rice varieties in coastal region of Bangladesh	budget Thousand
1	Project (Duration) Stability Analysis of BRRI developed rice varieties in Aus 2022 RYT-1 Favorable	 Season: Aus 2022 ➤ To investigate the stability of BRRI developed Aus rice varieties ➤ To find out location specific suitable variety(s) ➤ To evaluate specific and general 	Stability data of the BRRI developed Aus rice varieties in coastal region of Bangladesh To get suitable	budget Thousanc

3	RYT-2 Non saline	"	To get suitable
	tidal condition		line for ALART
4	PVT Tidal Submergence	To evaluate specific and general adaptability of the proposed variety as compared with standard checks farmer's field.	
5	Seed Production and Dissemination Program (SPDP) during Aus 2022 under GOB	 Rapid dissemination of newly released rice varieties to the farmers Motivate farmers to produce and preserve good quality seeds Increase availability of quality seed of modern rice varieties at farm level Exchange seeds from farmers to farmers Collect feedback about the varieties from farmers and Extension personnel. 	Rapid dissemination of newly released rice varieties
6	Mechanization BD48 & 98	To show the effectiveness of farm mechanization to the farmers	Enhance farmers interest on mechanization
7	Breeder Seed Production of BD48, 98	To guarantee that the subsequent generation seed class (foundation seed) shall conform to the prescribed standards of genetic purity	To supply breeder seed
8	TLS Production	 Utilize quality seed for conducting Research (HHAT) and Demonstration (SPDP) Provide seeds to different stakeholders to enhance dissemination of modern rice varieties. 	To supply TLS
9	Demonstration of BRRI hybrid dhan7	 Rapid dissemination of to the farmers To increase food security producing more rice. Season: Aman 2022 	Dissemination of BRRI hybrid dhan7
10	Creasing of DD 40 52		Development of
10	Crossing of BR49, 52, 87, 94 & 103 with Rajashail and Kajalshail	To develop new lines or variety	Development of new advance line suitable for costal region of Bangladesh
11	Time of Planting (SD)	To find out best possible transplanting time for short	Best possible transplanting time

		duration varieties in southern region of Bangladesh	varieties in southern region of Bangladesh will be identified
12	Time of Planting (LD)	To find out best possible transplanting time for long duration varieties in southern region of Bangladesh	Best possible transplanting time for long duration varieties in southern region of Bangladesh will be identified
13	Yield maximization	To maximize the yield of rice through integrated use of manures and fertilizers	
14	Stability Analysis of BRRI Varieties	 To investigate the stability of BRRI developed Aman rice varieties To find out location specific suitable variety(s) 	Stability data of the BRRI developed Aus rice varieties in coastal region of Bangladesh
15	Chemical Control of False Smut	To find out best chemical to control false smut	Best chemical for false smut control will be identified
16	Evaluation of Tungro resistant lines	To evaluate tungro resistant advance lines in southern region of Bangladesh	Best performing Tungro resistant advance lines will be identified
17	Multilocation trial of Promising Hybrid entries	To evaluate newly developed hybrid entries in southern region of Bangladesh	Newly developed promising hybrid entries will be identified
18	Multilocation trial of Promising Hybrid entries	To evaluate newly developed hybrid entries in southern region of Bangladesh	Newly developed promising hybrid entries will be identified
19	AGGRi Net Trial (ANT)	To evaluate salinity resistant advance lines in the coastal region of Bangladesh	Highly saline resistant advance lines will be identified
20	QTL analysis of Saline tolerant lines AGGRi-NET	To collect phenotypic data of the advance lines in farmers field	Phenotypic data of the advance lines will be obtained
21	PVT (Sallow Deep Water)	To evaluate specific and general adaptability of the proposed	To recommend for new variety

	1		
		variety as compared with standard checks farmer's field.	
22	RYT RLR	To evaluate specific and general adaptability of the advance salinity tolerant breeding lines as compared with standard checks in on-station.	
23	RYT ZER	"	To get suitable line for ALART
24	RYT (Short slender)	"	To get suitable line for ALART
25	RYT (Swarna and long slender type)	"	To get suitable line for ALART
26	RYT (Dev. of disease resistant rice)	"	To get suitable line for ALART
27	RYT (Tidal non- saline/Stagnant water)	"	To get suitable line for ALART
28	RYT STR-1	"	To get suitable line for ALART
30	RYT STR-2	<u>,</u>	To get suitable line for ALART
31	RYT STR-1	"	To get suitable line for ALART
32	RYT STR-2	"	To get suitable line for ALART
33	ALART (STR)	To evaluate the yield potential and adaptability of the rice genotypes at farmers' field as submergence tolerance short duration during T. Aman season.	To recommend advance lines for PVT
		To get feedback information about the advantages and disadvantages of the selected materials from farmers and Extension personnel.	
		To select suitable material(s) for proposed variety trial (PVT).	
34	ALART (STR)	"	"
35	ALART (PQR)	"	"
36	Re-ALART (Submergence tolerant rice SubTR-LD)	"	"
37	Re-ALART (Submergence tolerant	"	"

	rice SubTR-LD)		
38	Cost effective weed management	To find out cost effective weed management strategy in farmers field	cost effective weed management strategy will be identified
39	Survey and monitoring of rice diseases in Aman 2022	To monitor the disease prevalence at Chattogram and Rangamati region.	Disease prevalence data of Chattogram and Rangamati region will be obtained
40	Breeder Seed Production	To guarantee that the subsequent generation seed class (foundation seed) shall conform to the prescribed standards of genetic purity	To supply breeder seed
41	TLS Production	 Utilize quality seed for conducting Research (HHAT) and Demonstration (SPDP) Provide seeds to different stakeholders to enhance dissemination of modern rice varieties. 	
42	Seed Production and Dissemination Program (SPDP) during Aman 2022 under GOB	 Rapid dissemination of newly released rice varieties to the farmers Motivate farmers to produce and preserve good quality seeds Increase availability of quality seed of modern rice varieties at farm level Exchange seeds from farmers to farmers Collect feedback about the varieties from farmers and Extension personnel. 	dissemination of newly released
43	Seed Production and Dissemination Program (SPDP) during Aman 2022 under TRB	"	,,
44	Seed Production and Dissemination Program (SPDP) during Aman 2022 under HHAT	"	"

the modern rice production technologies. varieties will be increased Regional Station, Rajshahi Proposed Research Program 2022-23 SL Program area/Project Major objective Expected output bud Annubud	
Proposed Research Program 2022-23 SL Program Major objective Expected output Ann	
SL Program Major objective Expected output Annu	
duration (Th	get
Program Area: Varietal development	_/
Aus & Aman 2022-23	
1HybridizationTo develop high yielding genotypes with drought tolerance at reproductive stage and slender grain qualityGrowth duration: 120-130 days & Yield: 6.0-6.5 t/ha15.0	lac
2Confirmation of F1High yield, drought tolerant & acceptable grain type364 F1 seeds of 7 crosses	
3FRGAGeneration Advance21834 progenies	
4Collection maintenance of local landracesTo characterize the local genotypes for Rajshahi region and to maintain the local germplasm for using in crossing program.18 genotypes	
5 Yield Trial To evaluate specific and general adaptability of the advance breeding lines as compared with standard checks in on-farm condition Select good adaptable breeding lines with higher compared to standard checks.	
Boro 2022-23	
1HybridizationTo develop high yielding multi-trait (CT, DRR(Blast) & ZT grain)Growth duration: 145-150 days & Yield: 6.5-7.5 t/ha20.0	lac
2Confirmation of F1To confirm the crosses as true hybrid20 F1 s will be grown	
3 FRGA Generation Advance 15000 progenies	

4	Collection and maintenance of local landraces	To characterize the local genotypes for Rajshahi region and to maintain the local germplasm for using in crossing program.	50 genotypes	
5	Yield Trial	To evaluate specific and general adaptability of the advance breeding lines as compared with standard checks in on-farm condition	Select good adaptable breeding lines with higher compared to standard checks.	
		Pest management		
1	Evaluation of chemical against Sheath Blight disease, T. Aman 2022	To find out new fungicide(s) against sheath blight disease	To find out new fungicide(s)	0.5 lac
2	Efficacy of New Chemicals in Controlling Grain Spot, Brown Spot and Narrow Brown Spot of BRRI dhan28	To select appropriate chemical(s) against diseases To reduce minor diseases	To find out new fungicide(s)	
3	Integrated Approaches in reducing Sheath blight diseases	To minimize chemical use To increase yield	To minimize chemical use	
4	Effect of different fungicides against neck blast disease	To select appropriate chemical(s)	To select appropriate chemical(s)	
5	Survey and monitoring of different rice diseases	To investigate the present status of different type of rice diseases	To know the present status of rice diseases	
6	Effect of the height of solar light trap to maximize the catch of rice insect pest	To optimize the trap setting height for the highest rice pest catch.	The optimum trap setting height will be determined	
7	Impact of lighting period on the trapping of insects	To find out an effective lighting period for maximum insect trapping To find out suitable insect catching time.	The optimum trap setting period will be determined	
8	Stem borer species abundance and assessing yield losses in rice	To study the relative abundance of different species of rice stem borers and to determine the yield loss due to their damage.	Yield loss due to stem borer damage will be determined.	
		Program Area: Rice Farming System		
1	Evaluation of crop productivity under	To identify the profitable cropping patterns in Rajshahi region.	Crop productivity will be increased	1 lac

	four crops cropping			
	patterns in farmer's			
	field		0 1 1	0.51
2	Evaluation of crop	To identify the profitable cropping	Crop and soil	0.5 lac
	productivity and soil	patterns in Rajshahi region.	productivity will	
	health under		be increased	
	conservation tillage			
	system in maize-			
	mungbean-rice			
	cropping pattern	TO		1 5 1
3	Evaluation of crop	TO increase profitability and	11 2	1.5 lac
	productivity and soil	productivity	will be increased	
	health under			
	conservation tillage system in maize-			
	mungbean-rice			
4	cropping pattern Effect of time of	To determine entirgy relating time	Annronrieta tima	0.5 lac
4	planting with seedling	To determine optimum plating time of Boro rice in Rajshahi Region	Appropriate time of planting of	0.5 fac
	age on Boro rice	of Boro fice in Rajshani Region	Boro rice could be	
	varieties in Rajshahi		found	
	Region		Tound	
5	Evaluation of zero	To identify the extent of resource	Cost of production	0.5 lac
	tillage Mustard based	conservation and to increase the	could be reduced	0.5 140
	cropping patterns in	crop productivity.	could be reduced	
	Barind region	erop productivity.		
6	Farmers participatory	To identify the extent of resource	Cost of production	0.5 lac
	evaluation of relay	saving and to increase the crop	could be reduced	
	system or zero tillage	productivity.		
	lentil-based cropping	· · ·		
	patterns			
7	Development of	To increase productivity and	Crop productivity	0.6 lac
	Mustard-Boro-	cropping intensity	will be increased	
	Transplanted Jute-T.			
	Aman four crops-			
	based cropping			
	patterns instead of			
	Mustard-Boro-			
	Cropping pattern			