Biotechnology Division

Research Program 2020-2021

Sl	Program area/ Project	Major objective	Annual
No.			budget (in
n			Lakh Taka)
Program area: Biotechnology			
1	Evaluation of doubled haploids for	To select high yielding low	0.25
	developing low glycemic index	glycemic index (GI) rice lines	
	(GI) rice	having desirable characters	
2	Development and evaluation of	To develop salt tolerant rice	2.00
	salt tolerant rice lines through	variety	
2	anther culture	To develop Kelijine turne enemetie	2.00
5	premium quality Kalijira type rice	rice variety	2.00
	lines through anther culture	fice variety	
4	Development of Aus rice variety	To develop short duration high	1.00
	through anther culture	yield Aus rice variety	
5	Development of antioxidant	To develop antioxidant enriched	1.00
	enriched black rice variety	black rice variety	
	through anther culture		
6	Development of high yielding	To develop photosensitive rice	2.00
	photosensitive rice variety through	variety	
	anther culture		
7	Field evaluation of doubled	To select high yielding rice lines	1.50
-	haploid high yielding rice lines	having desirable characters	
8	Field evaluation of somaclonal	To select high yielding rice lines	0.50
	treated rice seed	naving desirable characters	
9	Development of high vielding	To develop high vielding short	1.00
	short stature aromatic Kilizira type	stature aromatic Kilizira type	1.00
	varieties using NMU	varieties	
10	Development of low sterility	To reduced sterility of BRH-11-	1.00
	variants of BRH-11-9-11-4-5B rice	9-11-4-5B	
11	lines using NMU		1.00
11	Development of Sheath Blight	lo develop Sneath Blight resistant	1.00
	mutation by NMU	lines	
12	Field evaluation of somaclonal	To develop high yielding Aus rice	1.00
	variants for developing Aus rice	variety	
	variety	-	
13	Field evaluation of somaclonal	To develop high yielding	1.00
	variants for developing	antioxidant enriched black rice	
	lines	variety	
14	Field evaluation of somaclonal	To develop somaclone of BRRI	0.5
	variants of BRRI dhan47	dhan47 with reduced shattering.	0.0
15	Development of rice variety	To develop different stress	1.5
_	through wide hybridization	tolerant rice variety through wide	
	followed by embryo rescue	hybridization	

16	Development of salt tolerant transgenic rice using <i>PVA</i> from <i>Portarasia coarctata</i>	To develop salt tolerant transgenic rice lines	2.00
17	Development of salt tolerant transgenic rice using <i>GlyI</i> and <i>GlyII</i> .	To develop salt tolerant transgenic rice lines	2.00
18	Introgression of salt tolerant mangrove gene <i>AeMDHAR</i>	To develop salt tolerant transgenic rice lines	2.00
19	Development of high yielding aromatic rice lines through genome editing	To develop high yielding aromatic rice lines using CRISPR-Cas9 genome editing technology.	4.00
20	Development of high yielding blast resistant lines using CRISPR-Cas9 technology.	To develop high yielding blast resistant lines using CRISPR- Cas9 genome editing technology.	4.00
21	Identification of QTLs for taller seedling height	To identify QTLs for taller seedling height for developing tidal submergence tolerant rice variety	3.00
22	Field evaluation of bacterial blight (BB) resistant gene pyramided lines	To develop breeding lines possessing multiple BB resistance genes	2.00
23	Validation of a simple functional marker for fragrance in non- Basmati fragrant rice varieties	To validate functional markers of major fragrance gene <i>BADH2</i> in different back ground and to examine the potential of this functional markers for using marker assisted selection	2.00
24	Isolation and cloning of stress tolerant DREB genes	To isolate and cloning of stress tolerance gene from <i>O. rufipogon</i>	5.00
25	Variations identification in DREB genes sequences in different types of rice genotypes	To find out the variation in DREB gene sequences in different types of rice genotypes	5.00
26	Variations identification in BADH2 gene sequence in different aromatic genotypes	To find out the variation in <i>BADH2</i> gene sequences in different Bangladeshi local aromatic rice genotypes	5.00
27	Isolation and cloning of drought tolerant genes from wheat	To isolate and cloning of drought tolerance gene	3.00
28	Identification of <i>Setaria italica</i> mutants losing C4 properties.	Characterizing of <i>Setaria italica</i> mutant population for loss of C4 functions	2.00