Agronomy Division ## Research Program, 2020-2021 | Sl.
No. | Title | Objective (s) | Annual
Budget | | |-----------------------|--|---|------------------|--| | 01 50 | ods and Caadlings | | (Lac Tk) | | | 1.1 | Alleviation of salt stress in rice by exogenous phytoprotectants: regulation of Na ⁺ /K ⁺ homeostasis and oxidative metabolism | To identify the effective phytoprotectant in mitigating salt stress of rice To explore the effect of exogenous phytoprotectants on plant phenotype under salt stress To assess the regulatory mechanisms of phytoprotectants in alleviating salt stress | 6.00 | | | 2. Planting Practices | | | | | | 2.1 | Enhancing rice yield by optimizing planting time of newly released transplanted Aman varieties | To determine the effect of variable planting time on the phenology, growth and yield of newly released transplanted Aman varieties To find out optimum time of planting for newly released transplanted Aman varieties | 3.00 | | | 3. Fert | tilizer Management | | | | | 3.1 | Application of Nano-
Zinc Oxide to Improve
Salt Tolerance in Rice | To develop an eco-friendly protocol to synthesis Nano-Zinc Oxide To investigate the effect of Nano-Zinc Oxide on growth , yield and mineral status of rice under salinity stress | 7.00 | | | 3.2 | Improving nutrient uptake, nitrogen-use efficiency and yield of rice through application of neem coated urea | To determine the nitrogen use efficiency as influenced by neem coated urea compared to prilled urea. To find out the influence of neem coated urea on the grain nutrient (NPK) uptake, growth and yield of transplanted rice. | 4.00 | | | 3.3 | Growth and yield improvement of transplanted Aman rice in Charland ecosystem through integrated nutrient management | To determine an economically suitable fertilizer management option for better growth and yield of rice in Charland ecosystem (combined with Soil Science Division) | 4.00 | | | 3.4 | Mitigation of waterlogging stress in Boro rice through application of plant protectant coupled with balanced fertilization | To determine the effect of combined application of fertilizer and plant protectants on the growth, yield and nutrient uptake of waterlogging Boro rice | 5.00 | | | 3.5 | Nitrogen application to
maximize grain yield of
shorna type varieties in
T. Aman season | To find out optimum nitrogen rate for shorna type varieties To find out the influence of nitrogen application on the grain N uptake, growth and yield of shorna type varieties. | 4.00 | |---------|--|--|-------| | 4. Wee | ed Management | | | | 4.1 | Residue analysis of widely used herbicides in the irrigated rice | To validate of high-performance liquid chromatographic protocol for the determination of herbicide residues To determine the residue of pre and postemergence herbicides in the irrigation water, soil, rice straw and grain | 8.00 | | 4.2 | Herbicide Application:
Shifts in soil microbial
community structure | To characterize the herbicide-induced responses
of microorganisms in transplanted rice. To evaluate the herbicide-induced tolerance of
soil microbes | 7.00 | | 5. Yiel | d Maximization | | | | 5.1 | Yield Maximization of BRRI developed rice varieties through influencing some Agronomic Critical Factors in different seasons | To study the effect of Agronomic most critical factors for yield maximization of newly BRRI developed varieties To find out and recommended the most appropriate Agronomic critical factors packages for yield maximization of newly BRRI developed varieties | 10.0 | | 5.2 | Maximizing yield and quality of some local fine aromatic cultivars through influencing some Agronomic management in Aman seasons | To study the effect of some Agronomic managements for yield maximization of some local fine aromatic popular varieties To find out and recommended the most appropriate Agronomic management packages for yield maximization and quality improvement of some local fine aromatic popular varieties. | 9.00 | | 6. Env | ironmental Pollution | | | | 6.1 | Toxic heavy metal
bioaccumulation in rice
cultivated in soil and
water contaminated with
industrial waste | To quantify the physico-chemical parameters of soil and water contaminated with industrial waste To determine the transfer of toxic heavy metals from contaminated soils and water into rice straw and grain | 13.00 |